Theorem function_union

Theorem. function_union
function f → function g → dom f ∩ dom g = ∅ → function (f ∪ g)
Proof
01. 1 ⊢ function f, hypo.
02. 2 ⊢ function g, hypo.
03. 3 ⊢ dom f ∩ dom g = ∅, hypo.
04. 4 ⊢ (x, y1) ∈ f ∪ g, hypo.
05. 5 ⊢ (x, y2) ∈ f ∪ g, hypo.
06. 4 ⊢ (x, y1) ∈ f ∨ (x, y1) ∈ g, union_elim 4.
07. 5 ⊢ (x, y2) ∈ f ∨ (x, y2) ∈ g, union_elim 5.
08. 4 ⊢ x ∈ dom (f ∪ g), dom_intro 4.
09. ⊢ dom (f ∪ g) = dom f ∪ dom g, dom_union.
10. 4 ⊢ x ∈ dom f ∪ dom g, eq_subst 9 8, P u ↔ x ∈ u.
11. 11 ⊢ (x, y1) ∈ f, hypo.
12. 12 ⊢ (x, y2) ∈ f, hypo.
13. 1, 11, 12 ⊢ y1 = y2, fn_unique_value 1 11 12.
14. 14 ⊢ (x, y2) ∈ g, hypo.
15. 11 ⊢ x ∈ dom f, dom_intro 11.
16. 14 ⊢ x ∈ dom g, dom_intro 14.
17. 3, 11, 14 ⊢ ⊥, disjoint_property 3 15 16.
18. 3, 11, 14 ⊢ y1 = y2, efq 17.
19. 1, 3, 5, 11 ⊢ y1 = y2, disj_elim 7 13 18.
20. 20 ⊢ (x, y1) ∈ g, hypo.
21. 21 ⊢ (x, y2) ∈ f, hypo.
22. 21 ⊢ x ∈ dom f, dom_intro 21.
23. 20 ⊢ x ∈ dom g, dom_intro 20.
24. 3, 20, 21 ⊢ ⊥, disjoint_property 3 22 23.
25. 3, 20, 21 ⊢ y1 = y2, efq 24.
26. 26 ⊢ (x, y2) ∈ g, hypo.
27. 2, 20, 26 ⊢ y1 = y2, fn_unique_value 2 20 26.
28. 2, 3, 5, 20 ⊢ y1 = y2, disj_elim 7 25 27.
29. 1, 2, 3, 4, 5 ⊢ y1 = y2, disj_elim 6 19 28.
30. 1, 2, 3 ⊢ (x, y1) ∈ f ∪ g → (x, y2) ∈ f ∪ g → y1 = y2,
  subj_intro_ii 29.
31. 1, 2, 3 ⊢ ∀y2. (x, y1) ∈ f ∪ g → (x, y2) ∈ f ∪ g → y1 = y2,
  uq_intro 30.
32. 1, 2, 3 ⊢ ∀y1. ∀y2. (x, y1) ∈ f ∪ g → (x, y2) ∈ f ∪ g → y1 = y2,
  uq_intro 31.
33. 1, 2, 3 ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ f ∪ g → (x, y2) ∈ f ∪ g → y1 = y2,
  uq_intro 32.
34. 1 ⊢ relation f, fn_is_rel 1.
35. 2 ⊢ relation g, fn_is_rel 2.
36. 1, 2 ⊢ relation (f ∪ g), relation_union 34 35.
37. 1, 2, 3 ⊢ function (f ∪ g), function_intro 36 33.
function_union. ⊢ function f → function g → dom f ∩ dom g = ∅ →
  function (f ∪ g), subj_intro_iii 37.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.