Theorem disjoint_property

Theorem. disjoint_property
A ∩ B = ∅ → x ∈ A → x ∈ B → ⊥
Proof
01. 1 ⊢ A ∩ B = ∅, hypo.
02. 2 ⊢ x ∈ A, hypo.
03. 3 ⊢ x ∈ B, hypo.
04. 2, 3 ⊢ x ∈ A ∩ B, intersection_intro 2 3.
05. 1, 2, 3 ⊢ x ∈ ∅, eq_subst 1 4, P u ↔ x ∈ u.
06. 1, 2, 3 ⊢ ⊥, empty_contra 5.
disjoint_property. ⊢ A ∩ B = ∅ → x ∈ A → x ∈ B → ⊥, subj_intro_iii 6.

Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.