Theorem dom_union

Theorem. dom_union
dom (R ∪ Q) = dom R ∪ dom Q
Proof
01. 1 ⊢ x ∈ dom (R ∪ Q), hypo.
02. 1 ⊢ ∃y. (x, y) ∈ R ∪ Q, dom_elim 1.
03. 3 ⊢ (x, y) ∈ R ∪ Q, hypo.
04. 3 ⊢ (x, y) ∈ R ∨ (x, y) ∈ Q, union_elim 3.
05. 5 ⊢ (x, y) ∈ R, hypo.
06. 5 ⊢ x ∈ dom R, dom_intro 5.
07. 5 ⊢ x ∈ dom R ∪ dom Q, union_introl 6.
08. 8 ⊢ (x, y) ∈ Q, hypo.
09. 8 ⊢ x ∈ dom Q, dom_intro 8.
10. 8 ⊢ x ∈ dom R ∪ dom Q, union_intror 9.
11. 3 ⊢ x ∈ dom R ∪ dom Q, disj_elim 4 7 10.
12. 1 ⊢ x ∈ dom R ∪ dom Q, ex_elim 2 11.
13. ⊢ x ∈ dom (R ∪ Q) → x ∈ dom R ∪ dom Q, subj_intro 12.
14. 14 ⊢ x ∈ dom R ∪ dom Q, hypo.
15. 14 ⊢ x ∈ dom R ∨ x ∈ dom Q, union_elim 14.
16. 16 ⊢ x ∈ dom R, hypo.
17. 16 ⊢ ∃y. (x, y) ∈ R, dom_elim 16.
18. 18 ⊢ (x, y) ∈ R, hypo.
19. 18 ⊢ (x, y) ∈ R ∪ Q, union_introl 18.
20. 18 ⊢ x ∈ dom (R ∪ Q), dom_intro 19.
21. 16 ⊢ x ∈ dom (R ∪ Q), ex_elim 17 20.
22. 22 ⊢ x ∈ dom Q, hypo.
23. 22 ⊢ ∃y. (x, y) ∈ Q, dom_elim 22.
24. 24 ⊢ (x, y) ∈ Q, hypo.
25. 24 ⊢ (x, y) ∈ R ∪ Q, union_intror 24.
26. 24 ⊢ x ∈ dom (R ∪ Q), dom_intro 25.
27. 22 ⊢ x ∈ dom (R ∪ Q), ex_elim 23 26.
28. 14 ⊢ x ∈ dom (R ∪ Q), disj_elim 15 21 27.
29. ⊢ x ∈ dom R ∪ dom Q → x ∈ dom (R ∪ Q), subj_intro 28.
30. ⊢ x ∈ dom (R ∪ Q) ↔ x ∈ dom R ∪ dom Q, bij_intro 13 29.
31. ⊢ ∀x. x ∈ dom (R ∪ Q) ↔ x ∈ dom R ∪ dom Q, uq_intro 30.
dom_union. ⊢ dom (R ∪ Q) = dom R ∪ dom Q, ext 31.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.