The Dedekind recursion theorem. It states that there exists
exactly one mapping f: ℕ → X that satisfies the
recurrence
f (n + 1) = φ n (f n)
with initial value f 0 = x0. Here, x0 may
be any element and φ n x any term. It is the corresponding
recursion theorem to the induction principle for
natural numbers.
Proof sketch
The existence of f is shown in nat_rec_existence,
its uniqueness in nat_rec_uniqueness.
Proof let rec f ↔ app f 0 = x0 ∧ (∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)). 01. 1 ⊢ set X, hypo. 02. 2 ⊢ x0 ∈ X, hypo. 03. 3 ⊢ ∀n. n ∈ ℕ → ∀x. x ∈ X → φ n x ∈ X, hypo. 04. 1, 2, 3 ⊢ ∃f. set f ∧ (map f ℕ X ∧ rec f), nat_rec_existence 1 2 3. 05. 5 ⊢ map f ℕ X ∧ rec f, hypo. 06. 6 ⊢ map g ℕ X ∧ rec g, hypo. 07. 5 ⊢ map f ℕ X, conj_eliml 5. 08. 6 ⊢ map g ℕ X, conj_eliml 6. 09. 5 ⊢ rec f, conj_elimr 5. 10. 6 ⊢ rec g, conj_elimr 6. 11. 5, 6 ⊢ ∀n. n ∈ ℕ → app f n = app g n, nat_rec_uniqueness 9 10, φ n x = φ n x. 12. 5, 6 ⊢ f = g, map_extensionality 7 8 11. 13. ⊢ map f ℕ X ∧ rec f → map g ℕ X ∧ rec g → f = g, subj_intro_ii 12. 14. ⊢ ∀g. map f ℕ X ∧ rec f → map g ℕ X ∧ rec g → f = g, uq_intro 13. 15. ⊢ ∀f. ∀g. map f ℕ X ∧ rec f → map g ℕ X ∧ rec g → f = g, uq_intro 14. 16. 1, 2, 3 ⊢ ∃g. set g ∧ ∀f. g = f ↔ map f ℕ X ∧ rec f, ex_uniq_set_intro 4 15. nat_recursion. ⊢ set X → x0 ∈ X → (∀n. n ∈ ℕ → ∀x. x ∈ X → φ n x ∈ X) → ∃g. set g ∧ ∀f. g = f ↔ map f ℕ X ∧ (app f 0 = x0 ∧ ∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)), subj_intro_iii 16.
Dependencies
The given proof depends on 18 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, power, radd_assoc, radd_closed, radd_inv, radd_neutr, real_is_set, rle_compat_add, rle_trans, rneg_closed, subset, union.