Theorem incl_from_union

Theorem. incl_from_union
A ∪ B = B → A ⊆ B
Proof
01. 1 ⊢ A ∪ B = B, hypo.
02. 2 ⊢ x ∈ A, hypo.
03. 2 ⊢ x ∈ A ∪ B, union_introl 2.
04. 1, 2 ⊢ x ∈ B, eq_subst 1 3, P u ↔ x ∈ u.
05. 1 ⊢ x ∈ A → x ∈ B, subj_intro 4.
06. 1 ⊢ ∀x. x ∈ A → x ∈ B, uq_intro 5.
07. 1 ⊢ A ⊆ B, incl_intro 6.
incl_from_union. ⊢ A ∪ B = B → A ⊆ B, subj_intro 7.

Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.