Proof 01. 1 ⊢ ∃x. ∀y. x = y ↔ P y, hypo. 02. 2 ⊢ ∀y. x = y ↔ P y, hypo. 03. 2 ⊢ x = x ↔ P x, uq_elim 2. 04. 2 ⊢ x = x → P x, bij_eliml 3. 05. ⊢ x = x, eq_refl. 06. 2 ⊢ P x, subj_elim 4 5. 07. 2 ⊢ ∃x. P x, ex_intro 6. 08. 1 ⊢ ∃x. P x, ex_elim 1 7. ex_uniq_eliml. ⊢ (∃x. ∀y. x = y ↔ P y) → (∃x. P x), subj_intro 8.
Dependencies
The given proof depends on one axiom:
eq_refl.