Proof 01. 1 ⊢ fn_on f A, hypo. 02. 1 ⊢ relation f, relation_from_fn_on 1. 03. ⊢ restr f A ⊆ f, restr_is_subclass. 04. 1 ⊢ relation (restr f A), relation_subclass 3 2. 05. 5 ⊢ (x, y1) ∈ (restr f A), hypo. 06. 6 ⊢ (x, y2) ∈ (restr f A), hypo. 07. 5 ⊢ (x, y1) ∈ f, incl_elim 3 5. 08. 6 ⊢ (x, y2) ∈ f, incl_elim 3 6. 09. 5 ⊢ x ∈ dom (restr f A), dom_intro 5. 10. ⊢ dom (restr f A) = dom f ∩ A, dom_restr. 11. 5 ⊢ x ∈ dom f ∩ A, eq_subst 10 9, P u ↔ x ∈ u. 12. 5 ⊢ x ∈ A, intersection_elimr 11. 13. 1 ⊢ ∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, ex_uniq_from_fn_on 1. 14. 1, 5 ⊢ ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, uq_bounded_elim 13 12. 15. 1, 5, 6 ⊢ y1 = y2, ex_uniq_set_elimr 14 7 8. 16. 1 ⊢ (x, y1) ∈ (restr f A) → (x, y2) ∈ (restr f A) → y1 = y2, subj_intro_ii 15. 17. 1 ⊢ ∀y2. (x, y1) ∈ (restr f A) → (x, y2) ∈ (restr f A) → y1 = y2, uq_intro 16. 18. 1 ⊢ ∀y1. ∀y2. (x, y1) ∈ (restr f A) → (x, y2) ∈ (restr f A) → y1 = y2, uq_intro 17. 19. 1 ⊢ ∀x. ∀y1. ∀y2. (x, y1) ∈ (restr f A) → (x, y2) ∈ (restr f A) → y1 = y2, uq_intro 18. 20. 1 ⊢ function (restr f A), function_intro 4 19. 21. 1 ⊢ relation f ∧ function (restr f A), conj_intro 2 20. 22. ⊢ fn_on f A → relation f ∧ function (restr f A), subj_intro 21. 23. 23 ⊢ relation f ∧ function (restr f A), hypo. 24. 23 ⊢ relation f, conj_eliml 23. 25. 23 ⊢ function (restr f A), conj_elimr 23. 26. 26 ⊢ x ∈ A, hypo. 27. 27 ⊢ (x, y1) ∈ f, hypo. 28. 28 ⊢ (x, y2) ∈ f, hypo. 29. 26, 27 ⊢ (x, y1) ∈ restr f A, restr_intro 27 26. 30. 26, 28 ⊢ (x, y2) ∈ restr f A, restr_intro 28 26. 31. 23, 26, 27, 28 ⊢ y1 = y2, fn_unique_value 25 29 30. 32. 23, 26 ⊢ (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, subj_intro_ii 31. 33. 23, 26 ⊢ ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, uq_intro 32. 34. 23, 26 ⊢ ∀y1. ∀y2. (x, y1) ∈ f → (x, y2) ∈ f → y1 = y2, uq_intro 33. 35. 35 ⊢ A ⊆ dom f, hypo. 36. 35, 26 ⊢ x ∈ dom f, incl_elim 35 26. 37. 35, 26 ⊢ ∃y. (x, y) ∈ f, dom_elim 36. 38. 38 ⊢ (x, y) ∈ f, hypo. 39. 38 ⊢ set (x, y), set_intro 38. 40. 38 ⊢ set y, setr_from_pair 39. 41. 38 ⊢ set y ∧ (x, y) ∈ f, conj_intro 40 38. 42. 38 ⊢ ∃y. set y ∧ (x, y) ∈ f, ex_intro 41. 43. 35, 26 ⊢ ∃y. set y ∧ (x, y) ∈ f, ex_elim 37 42. 44. 35, 23, 26 ⊢ ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, ex_uniq_set_intro 43 34. 45. 35, 23 ⊢ x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, subj_intro 44. 46. 35, 23 ⊢ ∀x. x ∈ A → ∃z. set z ∧ ∀y. z = y ↔ (x, y) ∈ f, uq_intro 45. 47. 35, 23 ⊢ fn_on f A, fn_on_intro 24 46. 48. 35 ⊢ relation f ∧ function (restr f A) → fn_on f A, subj_intro 47. 49. 35 ⊢ fn_on f A ↔ relation f ∧ function (restr f A), bij_intro 22 48. fn_on_char. ⊢ A ⊆ dom f → (fn_on f A ↔ relation f ∧ function (restr f A)), subj_intro 49.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.