Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. ⊢ a/1 = a⋅(/1), rdiv_eq. 03. ⊢ 1 ∈ ℝ, calc. 04. ⊢ a⋅1 = a⋅(/1), eq_cong rinv_one, f t = a⋅t. 05. ⊢ a/1 = a⋅1, eq_trans_rr 2 4. 06. 1 ⊢ a⋅1 = a, rmul_neutr 1. 07. 1 ⊢ a/1 = a, eq_trans 5 6. rdiv_neut. ⊢ a ∈ ℝ → a/1 = a, subj_intro 7.
Dependencies
The given proof depends on six axioms:
eq_refl, eq_subst, rinv_closed, rmul_comm, rmul_inv, rmul_neutr.