Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. ⊢ a - b = a + (-b), rsub_eq. 04. ⊢ a - b + b = a + (-b) + b, eq_cong 3, f t = t + b. 05. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 06. 1, 2 ⊢ a + (-b) + b = a + (-b + b), radd_assoc 1 5 2. 07. 2 ⊢ -b + b = b + -b, radd_comm 5 2. 08. 2 ⊢ b + -b = 0, radd_inv 2. 09. 2 ⊢ -b + b = 0, eq_trans 7 8. 10. 2 ⊢ a + (-b + b) = a + 0, eq_cong 9, f t = a + t. 11. 1 ⊢ a + 0 = a, radd_neutr 1. 12. 1, 2 ⊢ a + (-b + b) = a, eq_trans 10 11. 13. 1, 2 ⊢ a + (-b) + b = a, eq_trans 6 12. 14. 1, 2 ⊢ a - b + b = a, eq_trans 4 13. rsub_cancel. ⊢ a ∈ ℝ → b ∈ ℝ → a - b + b = a, subj_intro_ii 14.
Dependencies
The given proof depends on seven axioms:
eq_refl, eq_subst, radd_assoc, radd_comm, radd_inv, radd_neutr, rneg_closed.