Theorem truncated_power_idem

Theorem. truncated_power_idem
univ U → U ∩ power U = U
Proof
01. 1 ⊢ univ U, hypo.
02. 2 ⊢ x ∈ U, hypo.
03. 1, 2 ⊢ x ⊆ U, univ_trans 1 2.
04. 2 ⊢ set x, set_intro 2.
05. 1, 2 ⊢ x ∈ power U, power_intro 4 3.
06. 1 ⊢ x ∈ U → x ∈ power U, subj_intro 5.
07. 1 ⊢ ∀x. x ∈ U → x ∈ power U, uq_intro 6.
08. 1 ⊢ U ⊆ power U, incl_intro 7.
09. 1 ⊢ U ∩ power U = U, intersection_from_incl 8.
truncated_power_idem. ⊢ univ U → U ∩ power U = U, subj_intro 9.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.