Proof ile_antisym. ⊢ a ∈ ℤ → b ∈ ℤ → a ≤ b → b ≤ a → a = b, pred_ii_restr int_incl_in_real rle_antisym.
DependenciesThe given proof depends on four axioms:comp, eq_refl, eq_subst, rle_antisym.