Proof 01. 1 ⊢ x ∈ ⋃{B | ∃i. i ∈ I ∧ B = A i}, hypo. 02. 1 ⊢ ∃B. B ∈ {B | ∃i. i ∈ I ∧ B = A i} ∧ x ∈ B, Union_elim 1. 03. 3 ⊢ B ∈ {B | ∃i. i ∈ I ∧ B = A i} ∧ x ∈ B, hypo. 04. 3 ⊢ B ∈ {B | ∃i. i ∈ I ∧ B = A i}, conj_eliml 3. 05. 3 ⊢ ∃i. i ∈ I ∧ B = A i, comp_elim 4. 06. 6 ⊢ i ∈ I ∧ B = A i, hypo. 07. 6 ⊢ i ∈ I, conj_eliml 6. 08. 6 ⊢ B = A i, conj_elimr 6. 09. 3 ⊢ x ∈ B, conj_elimr 3. 10. 3, 6 ⊢ x ∈ A i, eq_subst 8 9, P u ↔ x ∈ u. 11. 3 ⊢ set B, set_intro 4. 12. 3, 6 ⊢ set (A i), eq_subst 8 11. 13. 3, 6 ⊢ i ∈ I ∧ x ∈ A i, conj_intro 7 10. 14. 3, 6 ⊢ i ∈ I ∧ x ∈ A i ∧ set (A i), conj_intro 13 12. 15. 3, 6 ⊢ ∃i. i ∈ I ∧ x ∈ A i ∧ set (A i), ex_intro 14. 16. 3 ⊢ ∃i. i ∈ I ∧ x ∈ A i ∧ set (A i), ex_elim 5 15. 17. 1 ⊢ ∃i. i ∈ I ∧ x ∈ A i ∧ set (A i), ex_elim 2 16. family_union_elim. ⊢ x ∈ ⋃{B | ∃i. i ∈ I ∧ B = A i} → ∃i. i ∈ I ∧ x ∈ A i ∧ set (A i), subj_intro 17.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.