Proof 01. 1 ⊢ β ∈ On, hypo. 02. 2 ⊢ α ∈ β, hypo. 03. 1 ⊢ β ∈ Univ ∩ {α | transitive α ∧ ∀x. x ∈ α → transitive x}, eq_subst On_eq 1. 04. 1 ⊢ β ∈ Univ, intersection_eliml 3. 05. 1 ⊢ β ∈ {α | transitive α ∧ ∀x. x ∈ α → transitive x}, intersection_elimr 3. 06. 1 ⊢ transitive β ∧ ∀x. x ∈ β → transitive x, comp_elim 5. 07. 1 ⊢ transitive β, conj_eliml 6. 08. 1 ⊢ ∀x. x ∈ β → transitive x, conj_elimr 6. 09. 1, 2 ⊢ transitive α, uq_bounded_elim 8 2. 10. 10 ⊢ x ∈ α, hypo. 11. 1, 2 ⊢ α ⊆ β, transitive_elim 7 2. 12. 1, 2, 10 ⊢ x ∈ β, incl_elim 11 10. 13. 1, 2, 10 ⊢ transitive x, uq_bounded_elim 8 12. 14. 1, 2 ⊢ x ∈ α → transitive x, subj_intro 13. 15. 1, 2 ⊢ ∀x. x ∈ α → transitive x, uq_intro 14. 16. 1, 2 ⊢ transitive α ∧ ∀x. x ∈ α → transitive x, conj_intro 9 15. 17. 2 ⊢ set α, set_intro 2. 18. 1, 2 ⊢ α ∈ {α | transitive α ∧ ∀x. x ∈ α → transitive x}, comp_intro 17 16. 19. 1 ⊢ β ⊆ Univ, univ_trans Univ_is_univ 4. 20. 1, 2 ⊢ α ∈ Univ, incl_elim 19 2. 21. 1, 2 ⊢ α ∈ Univ ∩ {α | transitive α ∧ ∀x. x ∈ α → transitive x}, intersection_intro 20 18. 22. 1, 2 ⊢ α ∈ On, eq_subst_rev On_eq 21, P t ↔ α ∈ t. 23. 1 ⊢ α ∈ β → α ∈ On, subj_intro 22. 24. 1 ⊢ ∀α. α ∈ β → α ∈ On, uq_intro 23. 25. 1 ⊢ β ⊆ On, incl_intro 24. On_is_transitive. ⊢ β ∈ On → β ⊆ On, subj_intro 25.
Dependencies
The given proof depends on 11 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, power, subset, union, universes.