Proof 01. 1 ⊢ ∀x. x ∈ M → transitive x, hypo. 02. 2 ⊢ u ∈ ⋂M, hypo. 03. 3 ⊢ y ∈ u, hypo. 04. 4 ⊢ x ∈ M, hypo. 05. 1, 4 ⊢ transitive x, uq_bounded_elim 1 4. 06. 2, 4 ⊢ u ∈ x, Intersection_elim 2 4. 07. 1, 2, 4 ⊢ u ⊆ x, transitive_elim 5 6. 08. 1, 2, 3, 4 ⊢ y ∈ x, incl_elim 7 3. 09. 1, 2, 3 ⊢ x ∈ M → y ∈ x, subj_intro 8. 10. 1, 2, 3 ⊢ ∀x. x ∈ M → y ∈ x, uq_intro 9. 11. 3 ⊢ set y, set_intro 3. 12. 1, 2, 3 ⊢ y ∈ ⋂M, Intersection_intro 11 10. 13. 1, 2 ⊢ y ∈ u → y ∈ ⋂M, subj_intro 12. 14. 1, 2 ⊢ ∀y. y ∈ u → y ∈ ⋂M, uq_intro 13. 15. 1, 2 ⊢ u ⊆ ⋂M, incl_intro 14. 16. 1 ⊢ u ∈ ⋂M → u ⊆ ⋂M, subj_intro 15. 17. 1 ⊢ ∀u. u ∈ ⋂M → u ⊆ ⋂M, uq_intro 16. 18. 1 ⊢ transitive (⋂M), transitive_intro 17. transitive_closed_Intersection. ⊢ (∀x. x ∈ M → transitive x) → transitive (⋂M), subj_intro 18.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.