Theorem lt_intro

Theorem. lt_intro
a ≤ b → ¬a = b → a < b
Proof
01. 1 ⊢ a ≤ b, hypo.
02. 2 ⊢ ¬a = b, hypo.
03. 1, 2 ⊢ a ≤ b ∧ ¬a = b, conj_intro 1 2.
04. 1, 2 ⊢ a < b, rsubj_elim lt_equi 3.
lt_intro. ⊢ a ≤ b → ¬a = b → a < b, subj_intro_ii 4.