Proof 01. 1 ⊢ A ⊆ X, hypo. 02. 2 ⊢ x ∈ X, hypo. 03. 3 ⊢ app (χ A X) x = {∅}, hypo. 04. 3 ⊢ {∅} = app (χ A X) x, eq_symm 3. 05. 1 ⊢ map (χ A X) X {∅, {∅}}, indicator_is_map 1. 06. 1, 2, 3 ⊢ (x, {∅}) ∈ χ A X, map_app_elim 5 2 4. 07. 1, 2, 3 ⊢ (x, {∅}) ∈ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} ∪ {t | ∃x. x ∈ A ∧ t = (x, {∅})}, eq_subst indicator_eq 6, P u ↔ (x, {∅}) ∈ u. 08. 1, 2, 3 ⊢ (x, {∅}) ∈ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} ∨ (x, {∅}) ∈ {t | ∃x. x ∈ A ∧ t = (x, {∅})}, union_elim 7. 09. 9 ⊢ (x, {∅}) ∈ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)}, hypo. 10. 9 ⊢ ∃u. u ∈ X \ A ∧ (x, {∅}) = (u, ∅), comp_elim 9. 11. 11 ⊢ u ∈ X \ A ∧ (x, {∅}) = (u, ∅), hypo. 12. 11 ⊢ (x, {∅}) = (u, ∅), conj_elimr 11. 13. 2 ⊢ set x, set_intro 2. 14. ⊢ set {∅}, set_sg empty_set_is_set. 15. 2, 11 ⊢ x = u ∧ {∅} = ∅, pair_property 13 14 12. 16. 2, 11 ⊢ {∅} = ∅, conj_elimr 15. 17. 2, 11 ⊢ ∅ = {∅}, eq_symm 16. 18. 2, 11 ⊢ ⊥, neg_elim zero_neq_one 17. 19. 2, 11 ⊢ x ∈ A, efq 18. 20. 2, 9 ⊢ x ∈ A, ex_elim 10 19. 21. 21 ⊢ (x, {∅}) ∈ {t | ∃x. x ∈ A ∧ t = (x, {∅})}, hypo. 22. 21 ⊢ ∃u. u ∈ A ∧ (x, {∅}) = (u, {∅}), comp_elim 21. 23. 23 ⊢ u ∈ A ∧ (x, {∅}) = (u, {∅}), hypo. 24. 23 ⊢ u ∈ A, conj_eliml 23. 25. 23 ⊢ (x, {∅}) = (u, {∅}), conj_elimr 23. 26. 2, 23 ⊢ x = u ∧ {∅} = {∅}, pair_property 13 14 25. 27. 2, 23 ⊢ x = u, conj_eliml 26. 28. 2, 23 ⊢ x ∈ A, eq_subst_rev 27 24. 29. 2, 21 ⊢ x ∈ A, ex_elim 22 28. 30. 1, 2, 3 ⊢ x ∈ A, disj_elim 8 20 29. from_indicator_app_is_one. ⊢ A ⊆ X → x ∈ X → app (χ A X) x = {∅} → x ∈ A, subj_intro_iii 30.
Dependencies
The given proof depends on 10 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing, subset, union.