Proof nle_trans. ⊢ a ∈ ℕ → b ∈ ℕ → c ∈ ℕ → a ≤ b → b ≤ c → a ≤ c, pred_iii_restr nat_incl_in_real rle_trans.
DependenciesThe given proof depends on five axioms:comp, eq_subst, radd_closed, real_is_set, rle_trans.