Theorem least_univ_is_univ

Theorem. least_univ_is_univ
set A → set (least_univ A) ∧ univ (least_univ A)
Proof
01. 1 ⊢ set A, hypo.
02. 1 ⊢ ∃U. set U ∧ univ U ∧ A ∈ U, universes 1.
03. 3 ⊢ set U ∧ univ U ∧ A ∈ U, hypo.
04. 3 ⊢ set U, conj_elimll 3.
05. 3 ⊢ univ U, conj_elimlr 3.
06. 3 ⊢ A ∈ U, conj_elimr 3.
07. 3 ⊢ univ U ∧ A ∈ U, conj_intro 5 6.
08. 3 ⊢ U ∈ {U | univ U ∧ A ∈ U}, comp_intro 4 7.
09. 3 ⊢ least_univ A ⊆ U, Intersection_is_lower_bound least_univ_eq 8.
10. 3 ⊢ set (least_univ A), subset 9 4.
11. 1 ⊢ set (least_univ A), ex_elim 2 10.
12. 12 ⊢ x ∈ least_univ A, hypo.
13. 12 ⊢ x ∈ ⋂{U | univ U ∧ A ∈ U},
  eq_subst least_univ_eq 12, P t ↔ x ∈ t.
14. 14 ⊢ y ∈ x, hypo.
15. 15 ⊢ U ∈ {U | univ U ∧ A ∈ U}, hypo.
16. 15 ⊢ univ U ∧ A ∈ U, comp_elim 15.
17. 15 ⊢ univ U, conj_eliml 16.
18. 15 ⊢ A ∈ U, conj_elimr 16.
19. 12, 15 ⊢ x ∈ U, Intersection_elim 13 15.
20. 12, 15 ⊢ x ⊆ U, univ_trans 17 19.
21. 12, 14, 15 ⊢ y ∈ U, incl_elim 20 14.
22. 12, 14 ⊢ U ∈ {U | univ U ∧ A ∈ U} → y ∈ U, subj_intro 21.
23. 12, 14 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → y ∈ U, uq_intro 22.
24. 14 ⊢ set y, set_intro 14.
25. 12, 14 ⊢ y ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro 24 23.
26. 12, 14 ⊢ y ∈ least_univ A,
  eq_subst_rev least_univ_eq 25, P t ↔ y ∈ t.
27. 12 ⊢ y ∈ x → y ∈ least_univ A, subj_intro 26.
28. 12 ⊢ ∀y. y ∈ x → y ∈ least_univ A, uq_intro 27.
29. 12 ⊢ x ⊆ least_univ A, incl_intro 28.
30. ⊢ x ∈ least_univ A → x ⊆ least_univ A, subj_intro 29.
31. ⊢ ∀x. x ∈ least_univ A → x ⊆ least_univ A, uq_intro 30.
32. 12, 15 ⊢ power x ∈ U, univ_closed_power 17 19.
33. 12 ⊢ U ∈ {U | univ U ∧ A ∈ U} → power x ∈ U, subj_intro 32.
34. 12 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → power x ∈ U, uq_intro 33.
35. 12 ⊢ set x, set_intro 12.
36. 12 ⊢ set (power x), power 35.
37. 12 ⊢ power x ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro 36 34.
38. 12 ⊢ power x ∈ least_univ A,
  eq_subst_rev least_univ_eq 37, P t ↔ power x ∈ t.
39. ⊢ x ∈ least_univ A → power x ∈ least_univ A, subj_intro 38.
40. ⊢ ∀x. x ∈ least_univ A → power x ∈ least_univ A, uq_intro 39.
41. 41 ⊢ I ∈ least_univ A, hypo.
42. 41 ⊢ I ∈ ⋂{U | univ U ∧ A ∈ U},
  eq_subst least_univ_eq 41, P t ↔ I ∈ t.
43. 43 ⊢ map f I (least_univ A), hypo.
44. 41, 15 ⊢ I ∈ U, Intersection_elim 42 15.
45. 15 ⊢ least_univ A ⊆ U, Intersection_is_lower_bound least_univ_eq 15.
46. 43, 15 ⊢ map f I U, map_rng_weaken 43 45.
47. 41, 43, 15 ⊢ ⋃(img f I) ∈ U, univ_closed_family_union 17 44 46.
48. 41, 43 ⊢ U ∈ {U | univ U ∧ A ∈ U} → ⋃(img f I) ∈ U, subj_intro 47.
49. 41, 43 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → ⋃(img f I) ∈ U, uq_intro 48.
50. 43 ⊢ function f ∧ dom f = I ∧ rng f ⊆ least_univ A, map_unfold 43.
51. 43 ⊢ rng f ⊆ least_univ A, conj_elimr 50.
52. ⊢ img f I ⊆ rng f, img_incl_in_rng.
53. 43 ⊢ img f I ⊆ least_univ A, incl_trans 52 51.
54. 1, 43 ⊢ set (img f I), subset 53 11.
55. 1, 43 ⊢ set (⋃(img f I)), union 54.
56. 1, 41, 43 ⊢ ⋃(img f I) ∈ ⋂{U | univ U ∧ A ∈ U},
  Intersection_intro 55 49.
57. 1, 41, 43 ⊢ ⋃(img f I) ∈ least_univ A,
  eq_subst_rev least_univ_eq 56, P t ↔ ⋃(img f I) ∈ t.
58. 1 ⊢ I ∈ least_univ A → map f I (least_univ A) →
  ⋃(img f I) ∈ least_univ A, subj_intro_ii 57.
59. 1 ⊢ ∀f. I ∈ least_univ A → map f I (least_univ A) →
  ⋃(img f I) ∈ least_univ A, uq_intro 58.
60. 1 ⊢ ∀I. ∀f. I ∈ least_univ A → map f I (least_univ A) →
  ⋃(img f I) ∈ least_univ A, uq_intro 59.
61. 15 ⊢ ∅ ∈ U, univ_contains_empty_set 17.
62. ⊢ U ∈ {U | univ U ∧ A ∈ U} → ∅ ∈ U, subj_intro 61.
63. ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → ∅ ∈ U, uq_intro 62.
64. ⊢ ∅ ∈ ⋂{U | univ U ∧ A ∈ U},
  Intersection_intro empty_set_is_set 63.
65. ⊢ ∅ ∈ least_univ A, eq_subst_rev least_univ_eq 64, P t ↔ ∅ ∈ t.
66. ⊢ ∅ ∈ least_univ A ∧
  (∀x. x ∈ least_univ A → x ⊆ least_univ A), conj_intro 65 31.
67. ⊢ ∅ ∈ least_univ A ∧
  (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧
  (∀x. x ∈ least_univ A → power x ∈ least_univ A), conj_intro 66 40.
68. 1 ⊢ ∅ ∈ least_univ A ∧
  (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧
  (∀x. x ∈ least_univ A → power x ∈ least_univ A) ∧
  (∀I. ∀f. I ∈ least_univ A → map f I (least_univ A) →
    ⋃(img f I) ∈ least_univ A), conj_intro 67 60.
69. ⊢ univ (least_univ A) ↔ ∅ ∈ least_univ A ∧
  (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧
  (∀x. x ∈ least_univ A → power x ∈ least_univ A) ∧
  (∀I. ∀x. I ∈ least_univ A → map x I (least_univ A) →
    ⋃(img x I) ∈ least_univ A), univ_equi.
70. 1 ⊢ univ (least_univ A), rsubj_elim 69 68.
71. 1 ⊢ set (least_univ A) ∧ univ (least_univ A), conj_intro 11 70.
least_univ_is_univ. ⊢ set A →
  set (least_univ A) ∧ univ (least_univ A), subj_intro 71.

Dependencies
The given proof depends on 11 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, power, subset, union, universes.