Proof 01. 1 ⊢ set A, hypo. 02. 1 ⊢ ∃U. set U ∧ univ U ∧ A ∈ U, universes 1. 03. 3 ⊢ set U ∧ univ U ∧ A ∈ U, hypo. 04. 3 ⊢ set U, conj_elimll 3. 05. 3 ⊢ univ U, conj_elimlr 3. 06. 3 ⊢ A ∈ U, conj_elimr 3. 07. 3 ⊢ univ U ∧ A ∈ U, conj_intro 5 6. 08. 3 ⊢ U ∈ {U | univ U ∧ A ∈ U}, comp_intro 4 7. 09. 3 ⊢ least_univ A ⊆ U, Intersection_is_lower_bound least_univ_eq 8. 10. 3 ⊢ set (least_univ A), subset 9 4. 11. 1 ⊢ set (least_univ A), ex_elim 2 10. 12. 12 ⊢ x ∈ least_univ A, hypo. 13. 12 ⊢ x ∈ ⋂{U | univ U ∧ A ∈ U}, eq_subst least_univ_eq 12, P t ↔ x ∈ t. 14. 14 ⊢ y ∈ x, hypo. 15. 15 ⊢ U ∈ {U | univ U ∧ A ∈ U}, hypo. 16. 15 ⊢ univ U ∧ A ∈ U, comp_elim 15. 17. 15 ⊢ univ U, conj_eliml 16. 18. 15 ⊢ A ∈ U, conj_elimr 16. 19. 12, 15 ⊢ x ∈ U, Intersection_elim 13 15. 20. 12, 15 ⊢ x ⊆ U, univ_trans 17 19. 21. 12, 14, 15 ⊢ y ∈ U, incl_elim 20 14. 22. 12, 14 ⊢ U ∈ {U | univ U ∧ A ∈ U} → y ∈ U, subj_intro 21. 23. 12, 14 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → y ∈ U, uq_intro 22. 24. 14 ⊢ set y, set_intro 14. 25. 12, 14 ⊢ y ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro 24 23. 26. 12, 14 ⊢ y ∈ least_univ A, eq_subst_rev least_univ_eq 25, P t ↔ y ∈ t. 27. 12 ⊢ y ∈ x → y ∈ least_univ A, subj_intro 26. 28. 12 ⊢ ∀y. y ∈ x → y ∈ least_univ A, uq_intro 27. 29. 12 ⊢ x ⊆ least_univ A, incl_intro 28. 30. ⊢ x ∈ least_univ A → x ⊆ least_univ A, subj_intro 29. 31. ⊢ ∀x. x ∈ least_univ A → x ⊆ least_univ A, uq_intro 30. 32. 12, 15 ⊢ power x ∈ U, univ_closed_power 17 19. 33. 12 ⊢ U ∈ {U | univ U ∧ A ∈ U} → power x ∈ U, subj_intro 32. 34. 12 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → power x ∈ U, uq_intro 33. 35. 12 ⊢ set x, set_intro 12. 36. 12 ⊢ set (power x), power 35. 37. 12 ⊢ power x ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro 36 34. 38. 12 ⊢ power x ∈ least_univ A, eq_subst_rev least_univ_eq 37, P t ↔ power x ∈ t. 39. ⊢ x ∈ least_univ A → power x ∈ least_univ A, subj_intro 38. 40. ⊢ ∀x. x ∈ least_univ A → power x ∈ least_univ A, uq_intro 39. 41. 41 ⊢ I ∈ least_univ A, hypo. 42. 41 ⊢ I ∈ ⋂{U | univ U ∧ A ∈ U}, eq_subst least_univ_eq 41, P t ↔ I ∈ t. 43. 43 ⊢ map f I (least_univ A), hypo. 44. 41, 15 ⊢ I ∈ U, Intersection_elim 42 15. 45. 15 ⊢ least_univ A ⊆ U, Intersection_is_lower_bound least_univ_eq 15. 46. 43, 15 ⊢ map f I U, map_rng_weaken 43 45. 47. 41, 43, 15 ⊢ ⋃(img f I) ∈ U, univ_closed_family_union 17 44 46. 48. 41, 43 ⊢ U ∈ {U | univ U ∧ A ∈ U} → ⋃(img f I) ∈ U, subj_intro 47. 49. 41, 43 ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → ⋃(img f I) ∈ U, uq_intro 48. 50. 43 ⊢ function f ∧ dom f = I ∧ rng f ⊆ least_univ A, map_unfold 43. 51. 43 ⊢ rng f ⊆ least_univ A, conj_elimr 50. 52. ⊢ img f I ⊆ rng f, img_incl_in_rng. 53. 43 ⊢ img f I ⊆ least_univ A, incl_trans 52 51. 54. 1, 43 ⊢ set (img f I), subset 53 11. 55. 1, 43 ⊢ set (⋃(img f I)), union 54. 56. 1, 41, 43 ⊢ ⋃(img f I) ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro 55 49. 57. 1, 41, 43 ⊢ ⋃(img f I) ∈ least_univ A, eq_subst_rev least_univ_eq 56, P t ↔ ⋃(img f I) ∈ t. 58. 1 ⊢ I ∈ least_univ A → map f I (least_univ A) → ⋃(img f I) ∈ least_univ A, subj_intro_ii 57. 59. 1 ⊢ ∀f. I ∈ least_univ A → map f I (least_univ A) → ⋃(img f I) ∈ least_univ A, uq_intro 58. 60. 1 ⊢ ∀I. ∀f. I ∈ least_univ A → map f I (least_univ A) → ⋃(img f I) ∈ least_univ A, uq_intro 59. 61. 15 ⊢ ∅ ∈ U, univ_contains_empty_set 17. 62. ⊢ U ∈ {U | univ U ∧ A ∈ U} → ∅ ∈ U, subj_intro 61. 63. ⊢ ∀U. U ∈ {U | univ U ∧ A ∈ U} → ∅ ∈ U, uq_intro 62. 64. ⊢ ∅ ∈ ⋂{U | univ U ∧ A ∈ U}, Intersection_intro empty_set_is_set 63. 65. ⊢ ∅ ∈ least_univ A, eq_subst_rev least_univ_eq 64, P t ↔ ∅ ∈ t. 66. ⊢ ∅ ∈ least_univ A ∧ (∀x. x ∈ least_univ A → x ⊆ least_univ A), conj_intro 65 31. 67. ⊢ ∅ ∈ least_univ A ∧ (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧ (∀x. x ∈ least_univ A → power x ∈ least_univ A), conj_intro 66 40. 68. 1 ⊢ ∅ ∈ least_univ A ∧ (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧ (∀x. x ∈ least_univ A → power x ∈ least_univ A) ∧ (∀I. ∀f. I ∈ least_univ A → map f I (least_univ A) → ⋃(img f I) ∈ least_univ A), conj_intro 67 60. 69. ⊢ univ (least_univ A) ↔ ∅ ∈ least_univ A ∧ (∀x. x ∈ least_univ A → x ⊆ least_univ A) ∧ (∀x. x ∈ least_univ A → power x ∈ least_univ A) ∧ (∀I. ∀x. I ∈ least_univ A → map x I (least_univ A) → ⋃(img x I) ∈ least_univ A), univ_equi. 70. 1 ⊢ univ (least_univ A), rsubj_elim 69 68. 71. 1 ⊢ set (least_univ A) ∧ univ (least_univ A), conj_intro 11 70. least_univ_is_univ. ⊢ set A → set (least_univ A) ∧ univ (least_univ A), subj_intro 71.
Dependencies
The given proof depends on 11 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, power, subset, union, universes.