Proof let A n ↔ n = 0 ∨ (∃m. m ∈ ℕ ∧ n = m + 1). 01. ⊢ 0 = 0, calc. 02. ⊢ A 0, disj_introl 1. 03. 3 ⊢ A n, hypo. 04. 4 ⊢ n = 0, hypo. 05. ⊢ 0 ∈ ℕ, zero_in_nat. 06. 4 ⊢ n ∈ ℕ, eq_subst_rev 4 5, P t ↔ t ∈ ℕ. 07. ⊢ n + 1 = n + 1, eq_refl. 08. 4 ⊢ n ∈ ℕ ∧ n + 1 = n + 1, conj_intro 6 7. 09. 4 ⊢ ∃m. m ∈ ℕ ∧ n + 1 = m + 1, ex_intro 8. 10. 4 ⊢ A (n + 1), disj_intror 9. 11. 11 ⊢ ∃m. m ∈ ℕ ∧ n = m + 1, hypo. 12. 12 ⊢ k ∈ ℕ ∧ n = k + 1, hypo. 13. 12 ⊢ k ∈ ℕ, conj_eliml 12. 14. 12 ⊢ n = k + 1, conj_elimr 12. 15. 12 ⊢ k + 1 ∈ ℕ, succ_in_nat 13. 16. 12 ⊢ n + 1 = k + 1 + 1, eq_cong 14, f t = t + 1. 17. 12 ⊢ k + 1 ∈ ℕ ∧ n + 1 = k + 1 + 1, conj_intro 15 16. 18. 12 ⊢ ∃m. m ∈ ℕ ∧ n + 1 = m + 1, ex_intro 17. 19. 12 ⊢ A (n + 1), disj_intror 18. 20. 11 ⊢ A (n + 1), ex_elim 11 19. 21. 3 ⊢ A (n + 1), disj_elim 3 10 20. 22. ⊢ A n → A (n + 1), subj_intro 21. 23. 23 ⊢ n ∈ ℕ, hypo. 24. 23 ⊢ A n → A (n + 1), wk 22. 25. ⊢ n ∈ ℕ → A n → A (n + 1), subj_intro 24. 26. ⊢ ∀n. n ∈ ℕ → A n → A (n + 1), uq_intro 25. 27. ⊢ ∀n. n ∈ ℕ → A n, nat_induction 2 26, P n ↔ A n. 28. 23 ⊢ A n, uq_bounded_elim 27 23. nat_zero_or_succ. ⊢ n ∈ ℕ → n = 0 ∨ ∃m. m ∈ ℕ ∧ n = m + 1, subj_intro 28.
Dependencies
The given proof depends on seven axioms:
comp, eq_refl, eq_subst, ext, radd_closed, real_is_set, subset.