Proof 01. 1 ⊢ x ∈ power ∅, hypo. 02. 1 ⊢ x ⊆ ∅, power_elim 1. 03. ⊢ ∅ ⊆ x, empty_set_is_least. 04. 1 ⊢ x = ∅, incl_antisym 2 3. 05. 1 ⊢ x ∈ {∅}, sg_intro empty_set_is_set 4. 06. ⊢ x ∈ power ∅ → x ∈ {∅}, subj_intro 5. 07. 7 ⊢ x ∈ {∅}, hypo. 08. 7 ⊢ x = ∅, sg_elim empty_set_is_set 7. 09. 7 ⊢ x ⊆ ∅, incl_from_eq 8. 10. 7 ⊢ set x, set_intro 7. 11. 7 ⊢ x ∈ power ∅, power_intro 10 9. 12. ⊢ x ∈ {∅} → x ∈ power ∅, subj_intro 11. 13. ⊢ x ∈ power ∅ ↔ x ∈ {∅}, bij_intro 6 12. 14. ⊢ ∀x. x ∈ power ∅ ↔ x ∈ {∅}, uq_intro 13. power_empty_set. ⊢ power ∅ = {∅}, ext 14.
Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, infinity.