Proof 01. 1 ⊢ ∀x. x ∈ M → transitive x, hypo. 02. 2 ⊢ u ∈ ⋃M, hypo. 03. 2 ⊢ ∃x. x ∈ M ∧ u ∈ x, Union_elim 2. 04. 4 ⊢ x ∈ M ∧ u ∈ x, hypo. 05. 4 ⊢ x ∈ M, conj_eliml 4. 06. 4 ⊢ u ∈ x, conj_elimr 4. 07. 1, 4 ⊢ transitive x, uq_bounded_elim 1 5. 08. 1, 4 ⊢ u ⊆ x, transitive_elim 7 6. 09. 9 ⊢ y ∈ u, hypo. 10. 1, 4, 9 ⊢ y ∈ x, incl_elim 8 9. 11. 1, 4, 9 ⊢ y ∈ ⋃M, Union_intro 5 10. 12. 1, 4 ⊢ y ∈ u → y ∈ ⋃M, subj_intro 11. 13. 1, 4 ⊢ ∀y. y ∈ u → y ∈ ⋃M, uq_intro 12. 14. 1, 4 ⊢ u ⊆ ⋃M, incl_intro 13. 15. 1, 2 ⊢ u ⊆ ⋃M, ex_elim 3 14. 16. 1 ⊢ u ∈ ⋃M → u ⊆ ⋃M, subj_intro 15. 17. 1 ⊢ ∀u. u ∈ ⋃M → u ⊆ ⋃M, uq_intro 16. 18. 1 ⊢ transitive (⋃M), transitive_intro 17. transitive_closed_Union. ⊢ (∀x. x ∈ M → transitive x) → transitive (⋃M), subj_intro 18.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.