Together with Union_is_upper_bound it states that ⋃M is the supremum of M with respect to the inclusion order. See Intersection_is_infimum for the dual statement.
Proof 01. 1 ⊢ ∀x. x ∈ M → x ⊆ u, hypo. 02. 2 ⊢ x ∈ ⋃M, hypo. 03. 2 ⊢ ∃y. y ∈ M ∧ x ∈ y, Union_elim 2. 04. 4 ⊢ y ∈ M ∧ x ∈ y, hypo. 05. 4 ⊢ y ∈ M, conj_eliml 4. 06. 4 ⊢ x ∈ y, conj_elimr 4. 07. 1, 4 ⊢ y ⊆ u, uq_bounded_elim 1 5. 08. 1, 4 ⊢ x ∈ u, incl_elim 7 6. 09. 1, 2 ⊢ x ∈ u, ex_elim 3 8. 10. 1 ⊢ x ∈ ⋃M → x ∈ u, subj_intro 9. 11. 1 ⊢ ∀x. x ∈ ⋃M → x ∈ u, uq_intro 10. 12. 1 ⊢ ⋃M ⊆ u, incl_intro 11. Union_is_supremum. ⊢ (∀x. x ∈ M → x ⊆ u) → ⋃M ⊆ u, subj_intro 12.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.