Proof 01. 1 ⊢ k ∈ ℕ, hypo. 02. 2 ⊢ n ∈ ℕ, hypo. 03. 3 ⊢ k ≤ n + 1, hypo. 04. 1, 2 ⊢ k ≤ n ∨ n < k, nle_lt_tricho 1 2. 05. 5 ⊢ k ≤ n, hypo. 06. 5 ⊢ k ≤ n ∨ k = n + 1, disj_introl 5. 07. 7 ⊢ n < k, hypo. 08. 1, 2, 7 ⊢ n + 1 ≤ k, nat_succ_le_from_lt 2 1 7. 09. 2 ⊢ n + 1 ∈ ℕ, succ_in_nat 2. 10. 1, 2, 3, 7 ⊢ k = n + 1, nle_antisym 1 9 3 8. 11. 1, 2, 3, 7 ⊢ k ≤ n ∨ k = n + 1, disj_intror 10. 12. 1, 2, 3 ⊢ k ≤ n ∨ k = n + 1, disj_elim 4 6 11. nle_succ_split. ⊢ k ∈ ℕ → n ∈ ℕ → k ≤ n + 1 → k ≤ n ∨ k = n + 1, subj_intro_iii 12.
Dependencies
The given proof depends on 18 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, radd_assoc, radd_closed, radd_inv, radd_neutr, real_is_set, rle_antisym, rle_compat_add, rle_refl, rle_total, rle_trans, rneg_closed, subset.