Proof let A n ↔ (∀k. k ∈ ℕ → n < k → n + 1 ≤ k). 01. 1 ⊢ k ∈ ℕ, hypo. 02. 2 ⊢ 0 < k, hypo. 03. 2 ⊢ ¬0 = k, neq_from_lt 2. 04. 2 ⊢ ¬k = 0, neq_symm 3. 05. 1, 2 ⊢ ∃m. m ∈ ℕ ∧ k = m + 1, nat_non_zero_is_succ 1 4. 06. 6 ⊢ m ∈ ℕ ∧ k = m + 1, hypo. 07. 6 ⊢ m ∈ ℕ, conj_eliml 6. 08. 6 ⊢ k = m + 1, conj_elimr 6. 09. 6 ⊢ 0 ≤ m, nat_non_negative 7. 10. ⊢ 0 ∈ ℕ, calc. 11. ⊢ 1 ∈ ℕ, calc. 12. 6 ⊢ 0 + 1 ≤ m + 1, nle_compat_add 10 7 11 9. 13. 6 ⊢ m + 1 = k, eq_symm 8. 14. 6 ⊢ 0 + 1 ≤ k, le_eq_trans 12 13. 15. 1, 2 ⊢ 0 + 1 ≤ k, ex_elim 5 14. 16. ⊢ k ∈ ℕ → 0 < k → 0 + 1 ≤ k, subj_intro_ii 15. 17. ⊢ A 0, uq_intro 16. 18. 18 ⊢ n ∈ ℕ, hypo. 19. 19 ⊢ A n, hypo. 20. 20 ⊢ k ∈ ℕ, hypo. 21. 21 ⊢ n + 1 < k, hypo. 22. 18 ⊢ 0 ≤ n, nat_non_negative 18. 23. 18 ⊢ 0 + 1 ≤ n + 1, nle_compat_add 10 18 11 22. 24. ⊢ 1 = 0 + 1, calc. 25. 18 ⊢ 1 ≤ n + 1, eq_le_trans 24 23. 26. 18 ⊢ n + 1 ∈ ℕ, succ_in_nat 18. 27. 18, 20, 21 ⊢ 1 < k, nle_lt_trans 11 26 20 25 21. 28. ⊢ 0 < 1, calc. 29. 18, 20, 21 ⊢ 0 < k, nlt_lt_trans 10 11 20 28 27. 30. 18, 20, 21 ⊢ ¬0 = k, neq_from_lt 29. 31. 18, 20, 21 ⊢ ¬k = 0, neq_symm 30. 32. 18, 20, 21 ⊢ ∃m. m ∈ ℕ ∧ k = m + 1, nat_non_zero_is_succ 20 31. 33. 33 ⊢ m ∈ ℕ ∧ k = m + 1, hypo. 34. 33 ⊢ m ∈ ℕ, conj_eliml 33. 35. 33 ⊢ k = m + 1, conj_elimr 33. 36. 19, 33 ⊢ n < m → n + 1 ≤ m, uq_bounded_elim 19 34. 37. 21, 33 ⊢ n + 1 < m + 1, eq_subst 35 21, P t ↔ n + 1 < t. 38. 18, 21, 33 ⊢ n < m, nlt_add_cancel_rr 18 34 11 37. 39. 18, 19, 21, 33 ⊢ n + 1 ≤ m, subj_elim 36 38. 40. 18 ⊢ n + 1 ∈ ℕ, succ_in_nat 18. 41. 18, 19, 21, 33 ⊢ n + 1 + 1 ≤ m + 1, nle_compat_add 40 34 11 39. 42. 18, 19, 21, 33 ⊢ n + 1 + 1 ≤ k, eq_subst_rev 35 41, P t ↔ n + 1 + 1 ≤ t. 43. 18, 19, 20, 21 ⊢ n + 1 + 1 ≤ k, ex_elim 32 42. 44. 18, 19 ⊢ k ∈ ℕ → n + 1 < k → n + 1 + 1 ≤ k, subj_intro_ii 43. 45. 18, 19 ⊢ A (n + 1), uq_intro 44. 46. ⊢ n ∈ ℕ → A n → A (n + 1), subj_intro_ii 45. 47. ⊢ ∀n. n ∈ ℕ → A n → A (n + 1), uq_intro 46. 48. ⊢ ∀n. n ∈ ℕ → A n, nat_induction 17 47, P n ↔ A n. 49. 49 ⊢ n ∈ ℕ, hypo. 50. 50 ⊢ k ∈ ℕ, hypo. 51. 49 ⊢ A n, uq_bounded_elim 48 49. 52. 49, 50 ⊢ n < k → n + 1 ≤ k, uq_bounded_elim 51 50. nat_succ_le_from_lt. ⊢ n ∈ ℕ → k ∈ ℕ → n < k → n + 1 ≤ k, subj_intro_ii 52.
Dependencies
The given proof depends on 15 axioms:
comp, efq, eq_refl, eq_subst, ext, radd_assoc, radd_closed, radd_inv, radd_neutr, real_is_set, rle_antisym, rle_compat_add, rle_trans, rneg_closed, subset.