Proof 01. 1 ⊢ y ∈ rng ∅, hypo. 02. 1 ⊢ ∃x. (x, y) ∈ ∅, rng_elim 1. 03. 3 ⊢ (x, y) ∈ ∅, hypo. 04. 3 ⊢ y ∈ ∅, empty_efq 3. 05. 1 ⊢ y ∈ ∅, ex_elim 2 4. 06. ⊢ y ∈ rng ∅ → y ∈ ∅, subj_intro 5. 07. ⊢ ∀y. y ∈ rng ∅ → y ∈ ∅, uq_intro 6. 08. ⊢ rng ∅ ⊆ ∅, incl_intro 7. 09. ⊢ ∅ ⊆ rng ∅, empty_set_is_least. rng_empty_set. ⊢ rng ∅ = ∅, incl_antisym 8 9.
Dependencies
The given proof depends on four axioms:
comp, efq, eq_subst, ext.