Proof 01. 1 ⊢ a ∈ ℤ, hypo. 02. 2 ⊢ b ∈ ℤ, hypo. 03. 3 ⊢ m ∈ ℤ, hypo. 04. 4 ⊢ cong a b m, hypo. 05. 4 ⊢ ∃k. k ∈ ℤ ∧ (a - b) = m⋅k, cong_elim 4. 06. 6 ⊢ k ∈ ℤ ∧ (a - b) = m⋅k, hypo. 07. 6 ⊢ k ∈ ℤ, conj_eliml 6. 08. 6 ⊢ (a - b) = m⋅k, conj_elimr 6. 09. 6 ⊢ -(a - b) = -(m⋅k), eq_cong 8, f t = -t. 10. 1, 2 ⊢ -(a - b) = b - a, isub_neg 1 2. 11. 3, 6 ⊢ -(m⋅k) = m⋅(-k), imul_compatr_neg 3 7. 12. 1, 2, 6 ⊢ b - a = -(m⋅k), eq_trans_ll 10 9. 13. 1, 2, 3, 6 ⊢ b - a = m⋅(-k), eq_trans 12 11. 14. 6 ⊢ -k ∈ ℤ, ineg_closed 7. 16. 1, 2, 3, 6 ⊢ cong b a m, cong_intro 14 13. 17. 1, 2, 3, 4 ⊢ cong b a m, ex_elim 5 16. cong_symm. ⊢ a ∈ ℤ → b ∈ ℤ → m ∈ ℤ → cong a b m → cong b a m, subj_intro_iv 17.
Dependencies
The given proof depends on 14 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed.