Theorem prod_incl_in_power

Theorem. prod_incl_in_power
A × B ⊆ power (power (A ∪ B))
Proof
01. 1 ⊢ t ∈ A × B, hypo.
02. 1 ⊢ ∃x. ∃y. x ∈ A ∧ y ∈ B ∧ t = (x, y), prod_elim 1.
03. 3 ⊢ ∃y. x ∈ A ∧ y ∈ B ∧ t = (x, y), hypo.
04. 4 ⊢ x ∈ A ∧ y ∈ B ∧ t = (x, y), hypo.
05. 4 ⊢ t = (x, y), conj_elimr 4.
06. 4 ⊢ t = {{x}, {x, y}}, eq_subst pair_eq 5, P u ↔ t = u.
07. 4 ⊢ x ∈ A ∧ y ∈ B, conj_eliml 4.
08. 4 ⊢ x ∈ A, conj_eliml 7.
09. 4 ⊢ y ∈ B, conj_elimr 7.
10. 4 ⊢ {x} ⊆ A, sg_incl_in 8.
11. 4 ⊢ {y} ⊆ B, sg_incl_in 9.
12. 4 ⊢ {x, y} ⊆ A ∪ B, union_incl_in_union 10 11.
13. ⊢ A ⊆ A ∪ B, union_incl_left.
14. 4 ⊢ {x} ⊆ A ∪ B, incl_trans 10 13.
15. 4 ⊢ set x, set_intro 8.
16. 4 ⊢ set y, set_intro 9.
17. 4 ⊢ set {x}, set_sg 15.
18. 4 ⊢ set {y}, set_sg 16.
19. 4 ⊢ set {x, y}, set_union 17 18.
20. 4 ⊢ {x} ∈ power (A ∪ B), power_intro 17 14.
21. 4 ⊢ {x, y} ∈ power (A ∪ B), power_intro 19 12.
22. 4 ⊢ {{x}} ⊆ power (A ∪ B), sg_incl_in 20.
23. 4 ⊢ {{x, y}} ⊆ power (A ∪ B), sg_incl_in 21.
24. 4 ⊢ {{x}, {x, y}} ⊆ power (A ∪ B), union_incl_in 22 23.
25. 4 ⊢ set {{x}}, set_sg 17.
26. 4 ⊢ set {{x, y}}, set_sg 19.
27. 4 ⊢ set {{x}, {x, y}}, set_union 25 26.
28. 4 ⊢ {{x}, {x, y}} ∈ power (power (A ∪ B)), power_intro 27 24.
29. 4 ⊢ t ∈ power (power (A ∪ B)), eq_subst_rev 6 28,
  P u ↔ u ∈ power (power (A ∪ B)).
30. 3 ⊢ t ∈ power (power (A ∪ B)), ex_elim 3 29.
31. 1 ⊢ t ∈ power (power (A ∪ B)), ex_elim 2 30.
32. ⊢ t ∈ A × B → t ∈ power (power (A ∪ B)), subj_intro 31.
33. ⊢ ∀t. t ∈ A × B → t ∈ power (power (A ∪ B)), uq_intro 32.
prod_incl_in_power. ⊢ A × B ⊆ power (power (A ∪ B)), incl_intro 33.

Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.