Proof 01. 1 ⊢ t ∈ A × B, hypo. 02. 1 ⊢ ∃x. ∃y. x ∈ A ∧ y ∈ B ∧ t = (x, y), prod_elim 1. 03. 3 ⊢ ∃y. x ∈ A ∧ y ∈ B ∧ t = (x, y), hypo. 04. 4 ⊢ x ∈ A ∧ y ∈ B ∧ t = (x, y), hypo. 05. 4 ⊢ t = (x, y), conj_elimr 4. 06. 4 ⊢ t = {{x}, {x, y}}, eq_subst pair_eq 5, P u ↔ t = u. 07. 4 ⊢ x ∈ A ∧ y ∈ B, conj_eliml 4. 08. 4 ⊢ x ∈ A, conj_eliml 7. 09. 4 ⊢ y ∈ B, conj_elimr 7. 10. 4 ⊢ {x} ⊆ A, sg_incl_in 8. 11. 4 ⊢ {y} ⊆ B, sg_incl_in 9. 12. 4 ⊢ {x, y} ⊆ A ∪ B, union_incl_in_union 10 11. 13. ⊢ A ⊆ A ∪ B, union_incl_left. 14. 4 ⊢ {x} ⊆ A ∪ B, incl_trans 10 13. 15. 4 ⊢ set x, set_intro 8. 16. 4 ⊢ set y, set_intro 9. 17. 4 ⊢ set {x}, set_sg 15. 18. 4 ⊢ set {y}, set_sg 16. 19. 4 ⊢ set {x, y}, set_union 17 18. 20. 4 ⊢ {x} ∈ power (A ∪ B), power_intro 17 14. 21. 4 ⊢ {x, y} ∈ power (A ∪ B), power_intro 19 12. 22. 4 ⊢ {{x}} ⊆ power (A ∪ B), sg_incl_in 20. 23. 4 ⊢ {{x, y}} ⊆ power (A ∪ B), sg_incl_in 21. 24. 4 ⊢ {{x}, {x, y}} ⊆ power (A ∪ B), union_incl_in 22 23. 25. 4 ⊢ set {{x}}, set_sg 17. 26. 4 ⊢ set {{x, y}}, set_sg 19. 27. 4 ⊢ set {{x}, {x, y}}, set_union 25 26. 28. 4 ⊢ {{x}, {x, y}} ∈ power (power (A ∪ B)), power_intro 27 24. 29. 4 ⊢ t ∈ power (power (A ∪ B)), eq_subst_rev 6 28, P u ↔ u ∈ power (power (A ∪ B)). 30. 3 ⊢ t ∈ power (power (A ∪ B)), ex_elim 3 29. 31. 1 ⊢ t ∈ power (power (A ∪ B)), ex_elim 2 30. 32. ⊢ t ∈ A × B → t ∈ power (power (A ∪ B)), subj_intro 31. 33. ⊢ ∀t. t ∈ A × B → t ∈ power (power (A ∪ B)), uq_intro 32. prod_incl_in_power. ⊢ A × B ⊆ power (power (A ∪ B)), incl_intro 33.
Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.