Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. ⊢ b < a ∨ ¬b < a, lem. 04. 4 ⊢ b < a, hypo. 05. 4 ⊢ a ≤ b ∨ b < a, disj_intror 4. 06. 6 ⊢ ¬b < a, hypo. 07. ⊢ b < a ↔ b ≤ a ∧ ¬b = a, lt_equi. 08. 6 ⊢ ¬(b ≤ a ∧ ¬b = a), rsubj_tollens 7 6. 09. 6 ⊢ ¬b ≤ a ∨ ¬¬b = a, neg_conj 8. 10. 10 ⊢ ¬b ≤ a, hypo. 11. 1, 2, 10 ⊢ a ≤ b, rle_neg 2 1 10. 12. 1, 2, 10 ⊢ a ≤ b ∨ b < a, disj_introl 11. 13. 13 ⊢ ¬¬b = a, hypo. 14. 13 ⊢ b = a, dne 13. 15. 13 ⊢ a = b, eq_symm 14. 16. 1 ⊢ a ≤ a, rle_refl 1. 17. 1, 13 ⊢ a ≤ b, le_eq_trans 16 15. 18. 1, 13 ⊢ a ≤ b ∨ b < a, disj_introl 17. 19. 1, 2, 6 ⊢ a ≤ b ∨ b < a, disj_elim 9 12 18. 20. 1, 2 ⊢ a ≤ b ∨ b < a, disj_elim 3 5 19. rle_lt_tricho. ⊢ a ∈ ℝ → b ∈ ℝ → a ≤ b ∨ b < a, subj_intro_ii 20.
Dependencies
The given proof depends on six axioms:
efq, eq_refl, eq_subst, lem, rle_refl, rle_total.