Theorem rsubj_tollens

Theorem. rsubj_tollens
(A ↔ B) → ¬A → ¬B

Modus tollens with respect to the right subjunction.

Proof
01. 1 ⊢ A ↔ B, hypo.
02. 2 ⊢ ¬A, hypo.
03. 3 ⊢ B, hypo.
04. 1, 3 ⊢ A, rsubj_elim 1 3.
05. 1, 2, 3 ⊢ ⊥, neg_elim 2 4.
06. 1, 2 ⊢ ¬B, neg_intro 5.
rsubj_tollens. ⊢ (A ↔ B) → ¬A → ¬B, subj_intro_ii 6.