Proof 01. 1 ⊢ t ∈ X × Y, hypo. 02. 1 ⊢ ∃x. ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), prod_elim 1. 03. 3 ⊢ ∃y. x ∈ X ∧ y ∈ Y ∧ t = (x, y), hypo. 04. 4 ⊢ x ∈ X ∧ y ∈ Y ∧ t = (x, y), hypo. 05. 4 ⊢ x ∈ X ∧ y ∈ Y, conj_eliml 4. 06. 4 ⊢ x ∈ X, conj_eliml 5. 07. 4 ⊢ y ∈ Y, conj_elimr 5. 08. 4 ⊢ t = (x, y), conj_elimr 4. 09. 4 ⊢ set x, set_intro 6. 10. 4 ⊢ set y, set_intro 7. 11. 4 ⊢ fst (x, y) = x, pair_fst 9 10. 12. 4 ⊢ scd (x, y) = y, pair_scd 9 10. 13. 4 ⊢ fst t = x, eq_subst_rev 8 11, P u ↔ fst u = x. 14. 4 ⊢ scd t = y, eq_subst_rev 8 12, P u ↔ scd u = y. 15. 4 ⊢ fst t ∈ X ∧ y ∈ Y, eq_subst_rev 13 5. 16. 4 ⊢ fst t ∈ X ∧ scd t ∈ Y, eq_subst_rev 14 15. 17. 3 ⊢ fst t ∈ X ∧ scd t ∈ Y, ex_elim 3 16. 18. 1 ⊢ fst t ∈ X ∧ scd t ∈ Y, ex_elim 2 17. prod_elim_lemma. ⊢ t ∈ X × Y → fst t ∈ X ∧ scd t ∈ Y, subj_intro 18.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing.