Theorem univ_closed_intersection

Theorem. univ_closed_intersection
univ U → x ∈ U → x ∩ y ∈ U
Proof
01. 1 ⊢ univ U, hypo.
02. 2 ⊢ x ∈ U, hypo.
03. ⊢ x ∩ y ⊆ x, intersection_incl_left.
04. 1, 2 ⊢ x ∩ y ∈ U, univ_closed_subset 1 3 2.
univ_closed_intersection. ⊢ univ U → x ∈ U → x ∩ y ∈ U,
  subj_intro_ii 4.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, subset.