Theorem union_distr

Theorem. union_distr
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
Proof
01. ⊢ C ∪ (A ∩ B) = (C ∪ A) ∩ (C ∪ B), union_distl.
02. ⊢ (A ∩ B) ∪ C = C ∪ (A ∩ B), union_comm.
03. ⊢ (A ∩ B) ∪ C = (C ∪ A) ∩ (C ∪ B), eq_trans 2 1.
04. ⊢ C ∪ A = A ∪ C, union_comm.
05. ⊢ C ∪ B = B ∪ C, union_comm.
06. ⊢ (A ∩ B) ∪ C = (A ∪ C) ∩ (C ∪ B),
  eq_subst 4 3, P X ↔ (A ∩ B) ∪ C = X ∩ (C ∪ B).
union_distr. ⊢ (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C),
  eq_subst 5 6, P X ↔ (A ∩ B) ∪ C = (A ∪ C) ∩ X.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.