Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. 4 ⊢ a ≤ b, hypo. 05. 5 ⊢ b < c, hypo. 06. 5 ⊢ b ≤ c, le_from_lt 5. 07. 1, 2, 3, 4, 5 ⊢ a ≤ c, rle_trans 1 2 3 4 6. 08. 8 ⊢ a = c, hypo. 09. 5, 8 ⊢ b < a, eq_subst_rev 8 5, P t ↔ b < t. 10. 5, 8 ⊢ b ≤ a, le_from_lt 9. 11. 1, 2, 4, 5, 8 ⊢ a = b, rle_antisym 1 2 4 10. 12. 5, 8 ⊢ ¬b = a, neq_from_lt 9. 13. 5, 8 ⊢ ¬a = b, neq_symm 12. 14. 1, 2, 4, 5, 8 ⊢ ⊥, neg_elim 13 11. 15. 1, 2, 4, 5 ⊢ ¬a = c, neg_intro 14. 16. 1, 2, 3, 4, 5 ⊢ a < c, lt_intro 7 15. 17. 1, 2, 3 ⊢ a ≤ b → b < c → a < c, subj_intro_ii 16. rle_lt_trans. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → a ≤ b → b < c → a < c, subj_intro_iii 17.
Dependencies
The given proof depends on four axioms:
eq_refl, eq_subst, rle_antisym, rle_trans.