Theorem rng_union

Theorem. rng_union
rng (R ∪ Q) = rng R ∪ rng Q
Proof
01. 1 ⊢ y ∈ rng (R ∪ Q), hypo.
02. 1 ⊢ ∃x. (x, y) ∈ R ∪ Q, rng_elim 1.
03. 3 ⊢ (x, y) ∈ R ∪ Q, hypo.
04. 3 ⊢ (x, y) ∈ R ∨ (x, y) ∈ Q, union_elim 3.
05. 5 ⊢ (x, y) ∈ R, hypo.
06. 5 ⊢ y ∈ rng R, rng_intro 5.
07. 5 ⊢ y ∈ rng R ∪ rng Q, union_introl 6.
08. 8 ⊢ (x, y) ∈ Q, hypo.
09. 8 ⊢ y ∈ rng Q, rng_intro 8.
10. 8 ⊢ y ∈ rng R ∪ rng Q, union_intror 9.
11. 3 ⊢ y ∈ rng R ∪ rng Q, disj_elim 4 7 10.
12. 1 ⊢ y ∈ rng R ∪ rng Q, ex_elim 2 11.
13. ⊢ y ∈ rng (R ∪ Q) → y ∈ rng R ∪ rng Q, subj_intro 12.
14. 14 ⊢ y ∈ rng R ∪ rng Q, hypo.
15. 14 ⊢ y ∈ rng R ∨ y ∈ rng Q, union_elim 14.
16. 16 ⊢ y ∈ rng R, hypo.
17. 16 ⊢ ∃x. (x, y) ∈ R, rng_elim 16.
18. 18 ⊢ (x, y) ∈ R, hypo.
19. 18 ⊢ (x, y) ∈ R ∪ Q, union_introl 18.
20. 18 ⊢ y ∈ rng (R ∪ Q), rng_intro 19.
21. 16 ⊢ y ∈ rng (R ∪ Q), ex_elim 17 20.
22. 22 ⊢ y ∈ rng Q, hypo.
23. 22 ⊢ ∃x. (x, y) ∈ Q, rng_elim 22.
24. 24 ⊢ (x, y) ∈ Q, hypo.
25. 24 ⊢ (x, y) ∈ R ∪ Q, union_intror 24.
26. 24 ⊢ y ∈ rng (R ∪ Q), rng_intro 25.
27. 22 ⊢ y ∈ rng (R ∪ Q), ex_elim 23 26.
28. 14 ⊢ y ∈ rng (R ∪ Q), disj_elim 15 21 27.
29. ⊢ y ∈ rng R ∪ rng Q → y ∈ rng (R ∪ Q), subj_intro 28.
30. ⊢ y ∈ rng (R ∪ Q) ↔ y ∈ rng R ∪ rng Q, bij_intro 13 29.
31. ⊢ ∀y. y ∈ rng (R ∪ Q) ↔ y ∈ rng R ∪ rng Q, uq_intro 30.
rng_union. ⊢ rng (R ∪ Q) = rng R ∪ rng Q, ext 31.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.