Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ set b, hypo. 03. 3 ⊢ y ∈ img {(a, b)} {a}, hypo. 04. 3 ⊢ ∃x. x ∈ {a} ∧ (x, y) ∈ {(a, b)}, img_elim 3. 05. 5 ⊢ x ∈ {a} ∧ (x, y) ∈ {(a, b)}, hypo. 06. 5 ⊢ (x, y) ∈ {(a, b)}, conj_elimr 5. 07. 1, 2 ⊢ set (a, b), set_pair 1 2. 08. 1, 2, 5 ⊢ (x, y) = (a, b), sg_elim 7 6. 09. 1, 2, 5 ⊢ (a, b) = (x, y), eq_symm 8. 10. 1, 2, 5 ⊢ a = x ∧ b = y, pair_property 1 2 9. 11. 1, 2, 5 ⊢ b = y, conj_elimr 10. 12. 1, 2, 5 ⊢ y = b, eq_symm 11. 13. 1, 2, 5 ⊢ y ∈ {b}, sg_intro 2 12. 14. 1, 2, 3 ⊢ y ∈ {b}, ex_elim 4 13. 15. 1, 2 ⊢ y ∈ img {(a, b)} {a} → y ∈ {b}, subj_intro 14. 16. 16 ⊢ y ∈ {b}, hypo. 17. 2, 16 ⊢ y = b, sg_elim 2 16. 18. ⊢ (a, b) = (a, b), eq_refl. 19. 2, 16 ⊢ (a, y) = (a, b), eq_subst_rev 17 18, P u ↔ (a, u) = (a, b). 20. 1, 2, 16 ⊢ (a, y) ∈ {(a, b)}, sg_intro 7 19. 21. ⊢ a = a, eq_refl. 22. 1 ⊢ a ∈ {a}, sg_intro 1 21. 23. 1, 2, 16 ⊢ y ∈ img {(a, b)} {a}, img_intro 22 20. 24. 1, 2 ⊢ y ∈ {b} → y ∈ img {(a, b)} {a}, subj_intro 23. 25. 1, 2 ⊢ y ∈ img {(a, b)} {a} ↔ y ∈ {b}, bij_intro 15 24. 26. 1, 2 ⊢ ∀y. y ∈ img {(a, b)} {a} ↔ y ∈ {b}, uq_intro 25. 27. 1, 2 ⊢ img {(a, b)} {a} = {b}, ext 26. img_sg_sg. ⊢ set a → set b → img {(a, b)} {a} = {b}, subj_intro_ii 27.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.