Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ c ∈ ℝ, hypo. 04. 4 ⊢ d ∈ ℝ, hypo. 05. 3, 4 ⊢ c + d ∈ ℝ, radd_closed 3 4. 06. 1, 2, 3, 4 ⊢ a + b + (c + d) = a + (b + (c + d)), radd_assoc 1 2 5. 07. 1, 2, 3, 4 ⊢ a + b + c + d = a + (b + (c + d)), radd_assoc_llllooo 1 2 3 4. 08. 1, 2, 3, 4 ⊢ a + b + c + d = a + b + (c + d), eq_trans_rr 7 6. radd_assoc_llolloo. ⊢ a ∈ ℝ → b ∈ ℝ → c ∈ ℝ → d ∈ ℝ → a + b + c + d = (a + b) + (c + d), subj_intro_iv 8.
Dependencies
The given proof depends on four axioms:
eq_refl, eq_subst, radd_assoc, radd_closed.