Proof let M = {x | x ⊆ a ∧ x ⊆ app f x}. let w = ⋃M. 01. 1 ⊢ set a, hypo. 02. 2 ⊢ map f (power a) (power a), hypo. 03. 3 ⊢ ∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, hypo. 04. 4 ⊢ x ∈ M, hypo. 05. 4 ⊢ x ⊆ a ∧ x ⊆ app f x, comp_elim 4. 06. 4 ⊢ x ⊆ a, conj_eliml 5. 07. ⊢ x ∈ M → x ⊆ a, subj_intro 6. 08. ⊢ ∀x. x ∈ M → x ⊆ a, uq_intro 7. 10. ⊢ w ⊆ a, Union_is_supremum 8. 11. 11 ⊢ x ∈ M, hypo. 12. ⊢ w = w, eq_refl. 13. 11 ⊢ x ⊆ w, Union_is_upper_bound 12 11. 14. 3 ⊢ ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, uq_elim 3. 15. 3 ⊢ x ⊆ w → app f x ⊆ app f w, uq_bounded_elim 14 10. 16. 3, 11 ⊢ app f x ⊆ app f w, subj_elim 15 13. 17. 11 ⊢ x ⊆ a ∧ x ⊆ app f x, comp_elim 11. 18. 11 ⊢ x ⊆ app f x, conj_elimr 17. 19. 3, 11 ⊢ x ⊆ app f w, incl_trans 18 16. 20. 3 ⊢ x ∈ M → x ⊆ app f w, subj_intro 19. 21. 3 ⊢ ∀x. x ∈ M → x ⊆ app f w, uq_intro 20. 22. 3 ⊢ w ⊆ app f w, Union_is_supremum 21. 24. 1 ⊢ set w, subset 10 1. 25. 1 ⊢ w ∈ power a, power_intro 24 10. 26. 1, 2 ⊢ app f w ∈ power a, map_app_in_cod 2 25. 27. 1, 2 ⊢ app f w ⊆ a, power_elim 26. 28. 3 ⊢ ∀y. y ⊆ a → w ⊆ y → app f w ⊆ app f y, uq_elim 3. 29. 1, 2, 3 ⊢ w ⊆ app f w → app f w ⊆ app f (app f w), uq_bounded_elim 28 27. 30. 1, 2, 3 ⊢ app f w ⊆ app f (app f w), subj_elim 29 22. 31. 1, 2, 3 ⊢ app f w ⊆ a ∧ app f w ⊆ app f (app f w), conj_intro 27 30. 32. 1, 2 ⊢ set (app f w), subset 27 1. 33. 1, 2, 3 ⊢ app f w ∈ M, comp_intro 32 31, P x ↔ x ⊆ a ∧ x ⊆ app f x. 34. 1, 2, 3 ⊢ app f w ⊆ w, Union_is_upper_bound 12 33. 35. 1, 2, 3 ⊢ app f w = w, incl_antisym 34 22. 36. 36 ⊢ x ⊆ a, hypo. 37. 37 ⊢ app f x = x, hypo. 38. 37 ⊢ x ⊆ app f x, incl_from_eq_rev 37. 39. 36, 37 ⊢ x ⊆ a ∧ x ⊆ app f x, conj_intro 36 38. 40. 1, 36 ⊢ set x, subset 36 1. 41. 1, 36, 37 ⊢ x ∈ M, comp_intro 40 39. 42. 1, 36, 37 ⊢ x ⊆ w, Union_is_upper_bound 12 41. 43. 1 ⊢ x ⊆ a → app f x = x → x ⊆ w, subj_intro_ii 42. 44. 1 ⊢ ∀x. x ⊆ a → app f x = x → x ⊆ w, uq_intro 43. 45. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w, conj_intro 10 35. 46. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w ∧ (∀x. x ⊆ a → app f x = x → x ⊆ w), conj_intro 45 44. 47. 1, 2, 3 ⊢ ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → x ⊆ u), ex_intro 46. incl_Knaster_Tarski_greatest. ⊢ set a → map f (power a) (power a) → (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) → ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → x ⊆ u), subj_intro_iii 47.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.