Theorem incl_Knaster_Tarski_greatest

Theorem. incl_Knaster_Tarski_greatest
set a → map f (power a) (power a) → (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) → ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → x ⊆ u)
Proof
let M = {x | x ⊆ a ∧ x ⊆ app f x}.
let w = ⋃M.
01. 1 ⊢ set a, hypo.
02. 2 ⊢ map f (power a) (power a), hypo.
03. 3 ⊢ ∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, hypo.

04. 4 ⊢ x ∈ M, hypo.
05. 4 ⊢ x ⊆ a ∧ x ⊆ app f x, comp_elim 4.
06. 4 ⊢ x ⊆ a, conj_eliml 5.
07. ⊢ x ∈ M → x ⊆ a, subj_intro 6.
08. ⊢ ∀x. x ∈ M → x ⊆ a, uq_intro 7.
10. ⊢ w ⊆ a, Union_is_supremum 8.

11. 11 ⊢ x ∈ M, hypo.
12. ⊢ w = w, eq_refl.
13. 11 ⊢ x ⊆ w, Union_is_upper_bound 12 11.
14. 3 ⊢ ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y, uq_elim 3.
15. 3 ⊢ x ⊆ w → app f x ⊆ app f w, uq_bounded_elim 14 10.
16. 3, 11 ⊢ app f x ⊆ app f w, subj_elim 15 13.
17. 11 ⊢ x ⊆ a ∧ x ⊆ app f x, comp_elim 11.
18. 11 ⊢ x ⊆ app f x, conj_elimr 17.
19. 3, 11 ⊢ x ⊆ app f w, incl_trans 18 16.
20. 3 ⊢ x ∈ M → x ⊆ app f w, subj_intro 19.
21. 3 ⊢ ∀x. x ∈ M → x ⊆ app f w, uq_intro 20.
22. 3 ⊢ w ⊆ app f w, Union_is_supremum 21.

24. 1 ⊢ set w, subset 10 1.
25. 1 ⊢ w ∈ power a, power_intro 24 10.
26. 1, 2 ⊢ app f w ∈ power a, map_app_in_cod 2 25.
27. 1, 2 ⊢ app f w ⊆ a, power_elim 26.
28. 3 ⊢ ∀y. y ⊆ a → w ⊆ y → app f w ⊆ app f y, uq_elim 3.
29. 1, 2, 3 ⊢ w ⊆ app f w → app f w ⊆ app f (app f w),
  uq_bounded_elim 28 27.
30. 1, 2, 3 ⊢ app f w ⊆ app f (app f w), subj_elim 29 22.
31. 1, 2, 3 ⊢ app f w ⊆ a ∧ app f w ⊆ app f (app f w),
  conj_intro 27 30.
32. 1, 2 ⊢ set (app f w), subset 27 1.
33. 1, 2, 3 ⊢ app f w ∈ M,
  comp_intro 32 31, P x ↔ x ⊆ a ∧ x ⊆ app f x.
34. 1, 2, 3 ⊢ app f w ⊆ w, Union_is_upper_bound 12 33.

35. 1, 2, 3 ⊢ app f w = w, incl_antisym 34 22.
36. 36 ⊢ x ⊆ a, hypo.
37. 37 ⊢ app f x = x, hypo.
38. 37 ⊢ x ⊆ app f x, incl_from_eq_rev 37.
39. 36, 37 ⊢ x ⊆ a ∧ x ⊆ app f x, conj_intro 36 38.
40. 1, 36 ⊢ set x, subset 36 1.
41. 1, 36, 37 ⊢ x ∈ M, comp_intro 40 39.
42. 1, 36, 37 ⊢ x ⊆ w, Union_is_upper_bound 12 41.
43. 1 ⊢ x ⊆ a → app f x = x → x ⊆ w, subj_intro_ii 42.
44. 1 ⊢ ∀x. x ⊆ a → app f x = x → x ⊆ w, uq_intro 43.
45. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w, conj_intro 10 35.
46. 1, 2, 3 ⊢ w ⊆ a ∧ app f w = w ∧
  (∀x. x ⊆ a → app f x = x → x ⊆ w), conj_intro 45 44.
47. 1, 2, 3 ⊢ ∃u. u ⊆ a ∧ app f u = u ∧
  (∀x. x ⊆ a → app f x = x → x ⊆ u), ex_intro 46.
incl_Knaster_Tarski_greatest. ⊢ set a →
  map f (power a) (power a) →
  (∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) →
  ∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → x ⊆ u),
  subj_intro_iii 47.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.