Proof 01. 1 ⊢ x ∈ UnivCl, hypo. 02. 2 ⊢ A ∈ ∅, hypo. 03. 2 ⊢ x ∈ A, empty_efq 2. 04. ⊢ A ∈ ∅ → x ∈ A, subj_intro 3. 05. ⊢ ∀A. A ∈ ∅ → x ∈ A, uq_intro 4. 06. 1 ⊢ set x, set_intro 1. 08. 1 ⊢ x ∈ ⋂∅, Intersection_intro 6 5. 09. ⊢ x ∈ UnivCl → x ∈ ⋂∅, subj_intro 8. 10. ⊢ ∀x. x ∈ UnivCl → x ∈ ⋂∅, uq_intro 9. 11. ⊢ UnivCl ⊆ ⋂∅, incl_intro 10. 12. ⊢ ⋂∅ ⊆ UnivCl, UnivCl_is_greatest. Intersection_empty_set. ⊢ ⋂∅ = UnivCl, incl_antisym 12 11.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.