Proof 01. 1 ⊢ x ∈ dom ∅, hypo. 02. 1 ⊢ ∃y. (x, y) ∈ ∅, dom_elim 1. 03. 3 ⊢ (x, y) ∈ ∅, hypo. 04. 3 ⊢ x ∈ ∅, empty_efq 3. 05. 1 ⊢ x ∈ ∅, ex_elim 2 4. 06. ⊢ x ∈ dom ∅ → x ∈ ∅, subj_intro 5. 07. ⊢ ∀x. x ∈ dom ∅ → x ∈ ∅, uq_intro 6. 08. ⊢ dom ∅ ⊆ ∅, incl_intro 7. 09. ⊢ ∅ ⊆ dom ∅, empty_set_is_least. dom_empty_set. ⊢ dom ∅ = ∅, incl_antisym 8 9.
Dependencies
The given proof depends on four axioms:
comp, efq, eq_subst, ext.