Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ x ∈ X, hypo. 03. ⊢ map (id X) X X, id_is_map. 04. 2 ⊢ app (id X) x = x, id_app 2. 05. 1, 2 ⊢ app (f ∘ id X) x = app f (app (id X) x), map_app_composition 3 1 2. 06. 1, 2 ⊢ app (f ∘ id X) x = app f x, eq_subst 4 5, P t ↔ app (f ∘ id X) x = app f t. 07. 1 ⊢ x ∈ X → app (f ∘ id X) x = app f x, subj_intro 6. 08. 1 ⊢ ∀x. x ∈ X → app (f ∘ id X) x = app f x, uq_intro 7. 09. 1 ⊢ map (f ∘ id X) X Y, composition_is_map 3 1. 10. 1 ⊢ f ∘ id X = f, map_extensionality 9 1 8. id_neutr. ⊢ map f X Y → f ∘ id X = f, subj_intro 10.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.