Proof 01. 1 ⊢ a ∈ ℕ, hypo. 02. 2 ⊢ b ∈ ℕ, hypo. 03. 3 ⊢ a + 1 = b + 1, hypo. 04. 1 ⊢ a ∈ ℝ, incl_elim nat_incl_in_real 1. 05. 2 ⊢ b ∈ ℝ, incl_elim nat_incl_in_real 2. 06. ⊢ 1 ∈ ℝ, calc. 07. 1, 2, 3 ⊢ a = b, radd_cancel_rr 4 5 6 3. nat_succ_inj. ⊢ a ∈ ℕ → b ∈ ℕ → a + 1 = b + 1 → a = b, subj_intro_iii 7.
Dependencies
The given proof depends on nine axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_inv, radd_neutr, real_is_set, rneg_closed.