Proof 01. 1 ⊢ y ∈ M, hypo. 02. 2 ⊢ ∀y. y ∈ M → x ∈ y, hypo. 03. 2 ⊢ y ∈ M → x ∈ y, uq_elim 2. 04. 1, 2 ⊢ x ∈ y, subj_elim 3 1. 05. 1, 2 ⊢ set x, set_intro 4. 06. 1, 2 ⊢ x ∈ ⋂M, Intersection_intro 5 2. Intersection_intro_witness. ⊢ y ∈ M → (∀y. y ∈ M → x ∈ y) → x ∈ ⋂M, subj_intro_ii 6.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.