Theorem app_is_set

Theorem. app_is_set
function f → x ∈ dom f → set (app f x)
Proof
01. 1 ⊢ function f, hypo.
02. 2 ⊢ x ∈ dom f, hypo.
03. 1, 2 ⊢ ∃y. y ∈ rng f ∧ y = app f x, fn_app_exists 1 2.
04. 4 ⊢ y ∈ rng f ∧ y = app f x, hypo.
05. 4 ⊢ y ∈ rng f, conj_eliml 4.
06. 4 ⊢ y = app f x, conj_elimr 4.
07. 4 ⊢ set y, set_intro 5.
08. 4 ⊢ set (app f x), eq_subst 6 7, P u ↔ set u.
09. 1, 2 ⊢ set (app f x), ex_elim 3 8.
app_is_set. ⊢ function f → x ∈ dom f → set (app f x), subj_intro_ii 9.

Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.