Theorem nle_total

Theorem. nle_total
a ∈ ℕ → b ∈ ℕ → a ≤ b ∨ b ≤ a
Proof
nle_total. ⊢ a ∈ ℕ → b ∈ ℕ → a ≤ b ∨ b ≤ a,
  pred_ii_restr nat_incl_in_real rle_total.

Dependencies
The given proof depends on five axioms:
comp, eq_subst, radd_closed, real_is_set, rle_total.