Theorem restr_img_self

Theorem. restr_img_self
img f A ⊆ img (restr f A) A
Proof
01. 1 ⊢ y ∈ img f A, hypo.
02. 1 ⊢ ∃x. x ∈ A ∧ (x, y) ∈ f, img_elim 1.
03. 3 ⊢ x ∈ A ∧ (x, y) ∈ f, hypo.
04. 3 ⊢ x ∈ A, conj_eliml 3.
05. 3 ⊢ (x, y) ∈ f, conj_elimr 3.
06. 3 ⊢ (x, y) ∈ restr f A, restr_intro 5 4.
07. 3 ⊢ y ∈ img (restr f A) A, img_intro 4 6.
08. 1 ⊢ y ∈ img (restr f A) A, ex_elim 2 7.
09. ⊢ y ∈ img f A → y ∈ img (restr f A) A, subj_intro 8.
10. ⊢ ∀y. y ∈ img f A → y ∈ img (restr f A) A, uq_intro 9.
restr_img_self. ⊢ img f A ⊆ img (restr f A) A, incl_intro 10.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.