Proof let C n ↔ (∀k. k ∈ ℕ → k ≤ n → P k). 01. 1 ⊢ P 0, hypo. 02. 2 ⊢ ∀n. n ∈ ℕ → C n → P (n + 1), hypo. 03. 3 ⊢ k ∈ ℕ, hypo. 04. 4 ⊢ k ≤ 0, hypo. 05. 3 ⊢ 0 ≤ k, nat_non_negative 3. 06. ⊢ 0 ∈ ℕ, zero_in_nat. 07. 3, 4 ⊢ k = 0, nle_antisym 3 6 4 5. 08. 1, 3, 4 ⊢ P k, eq_subst_rev 7 1, P t ↔ P t. 09. 1 ⊢ k ∈ ℕ → k ≤ 0 → P k, subj_intro_ii 8. 10. 1 ⊢ C 0, uq_intro 9. 11. 11 ⊢ n ∈ ℕ, hypo. 12. 12 ⊢ C n, hypo. 13. 2, 11 ⊢ C n → P (n + 1), uq_bounded_elim 2 11. 14. 2, 11, 12 ⊢ P (n + 1), subj_elim 13 12. 15. 15 ⊢ k ∈ ℕ, hypo. 16. 16 ⊢ k ≤ n + 1, hypo. 17. 11, 15, 16 ⊢ k ≤ n ∨ k = n + 1, nle_succ_split 15 11 16. 18. 18 ⊢ k ≤ n, hypo. 19. 12, 15 ⊢ k ≤ n → P k, uq_bounded_elim 12 15. 20. 12, 15, 18 ⊢ P k, subj_elim 19 18. 21. 21 ⊢ k = n + 1, hypo. 22. 2, 11, 12, 21 ⊢ P k, eq_subst_rev 21 14, P t ↔ P t. 23. 2, 11, 12, 15, 16 ⊢ P k, disj_elim 17 20 22. 24. 2, 11, 12 ⊢ k ∈ ℕ → k ≤ n + 1 → P k, subj_intro_ii 23. 25. 2, 11, 12 ⊢ C (n + 1), uq_intro 24. 26. 2 ⊢ n ∈ ℕ → C n → C (n + 1), subj_intro_ii 25. 27. 2 ⊢ ∀n. n ∈ ℕ → C n → C (n + 1), uq_intro 26. 28. 1, 2 ⊢ ∀n. n ∈ ℕ → C n, nat_induction 10 27, P n ↔ C n. 29. 29 ⊢ n ∈ ℕ, hypo. 30. 1, 2, 29 ⊢ C n, uq_bounded_elim 28 29. 31. 1, 2, 29 ⊢ n ≤ n → P n, uq_bounded_elim 30 29. 32. 29 ⊢ n ≤ n, nle_refl 29. 33. 1, 2, 29 ⊢ P n, subj_elim 31 32. 34. 1, 2 ⊢ n ∈ ℕ → P n, subj_intro 33. 35. 1, 2 ⊢ ∀n. n ∈ ℕ → P n, uq_intro 34. nat_strong_induction. ⊢ P 0 → (∀n. n ∈ ℕ → (∀k. k ∈ ℕ → k ≤ n → P k) → P (n + 1)) → (∀n. n ∈ ℕ → P n), subj_intro_ii 35.
Dependencies
The given proof depends on 18 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, radd_assoc, radd_closed, radd_inv, radd_neutr, real_is_set, rle_antisym, rle_compat_add, rle_refl, rle_total, rle_trans, rneg_closed, subset.