Proof 1. 1 ⊢ relation R, hypo. 2. 2 ⊢ dom R ⊆ X, hypo. 3. 3 ⊢ rng R ⊆ Y, hypo. 4. 4 ⊢ t ∈ R, hypo. 5. 1 ⊢ ∀t. t ∈ R → ∃x. ∃y. t = (x, y), relation_unfold 1. 6. 1 ⊢ t ∈ R → ∃x. ∃y. t = (x, y), uq_elim 5. 7. 1, 4 ⊢ ∃x. ∃y. t = (x, y), subj_elim 6 4. 8. 8 ⊢ ∃y. t = (x, y), hypo. 9. 9 ⊢ t = (x, y), hypo. 10. 4, 9 ⊢ (x, y) ∈ R, eq_subst 9 4, P u ↔ u ∈ R. 11. 4, 9 ⊢ x ∈ dom R, dom_intro 10. 12. 2, 4, 9 ⊢ x ∈ X, incl_elim 2 11. 13. 4, 9 ⊢ y ∈ rng R, rng_intro 10. 14. 3, 4, 9 ⊢ y ∈ Y, incl_elim 3 13. 15. 2, 3, 4, 9 ⊢ (x, y) ∈ X × Y, prod_intro 12 14. 16. 2, 3, 4, 9 ⊢ t ∈ X × Y, eq_subst_rev 9 15, P u ↔ u ∈ X × Y. 17. 2, 3, 4, 8 ⊢ t ∈ X × Y, ex_elim 8 16. 18. 1, 2, 3, 4 ⊢ t ∈ X × Y, ex_elim 7 17. 19. 1, 2, 3 ⊢ t ∈ R → t ∈ X × Y, subj_intro 18. 20. 1, 2, 3 ⊢ ∀t. t ∈ R → t ∈ X × Y, uq_intro 19. 21. 1, 2, 3 ⊢ R ⊆ X × Y, incl_intro 20. relation_incl_prod. ⊢ relation R → dom R ⊆ X → rng R ⊆ Y → R ⊆ X × Y, subj_intro_iii 21.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.