Theorem clop_extensivity

Theorem. clop_extensivity
closure_operator H U → X ⊆ U → X ⊆ app H X
Proof
01. 1 ⊢ closure_operator H U, hypo.
02. 2 ⊢ X ⊆ U, hypo.
03. 1 ⊢ ∀X. X ⊆ U → X ⊆ app H X,
  lsubj_conj_elimllr clop_equi 1.
04. 1, 2 ⊢ X ⊆ app H X, uq_bounded_elim 3 2.
clop_extensivity. ⊢ closure_operator H U →
  X ⊆ U → X ⊆ app H X, subj_intro_ii 4.