Proof 01. 1 ⊢ x ∈ inv_img (S ∘ R) B, hypo. 02. 1 ⊢ ∃z. z ∈ B ∧ (x, z) ∈ S ∘ R, inv_img_elim 1. 03. 3 ⊢ z ∈ B ∧ (x, z) ∈ S ∘ R, hypo. 04. 3 ⊢ z ∈ B, conj_eliml 3. 05. 3 ⊢ (x, z) ∈ S ∘ R, conj_elimr 3. 06. 3 ⊢ ∃y. (x, y) ∈ R ∧ (y, z) ∈ S, composition_elim 5. 07. 7 ⊢ (x, y) ∈ R ∧ (y, z) ∈ S, hypo. 08. 7 ⊢ (y, z) ∈ S, conj_elimr 7. 09. 3, 7 ⊢ y ∈ inv_img S B, inv_img_intro 4 8. 10. 7 ⊢ (x, y) ∈ R, conj_eliml 7. 11. 3, 7 ⊢ x ∈ inv_img R (inv_img S B), inv_img_intro 9 10. 12. 3 ⊢ x ∈ inv_img R (inv_img S B), ex_elim 6 11. 13. 1 ⊢ x ∈ inv_img R (inv_img S B), ex_elim 2 12. 14. ⊢ x ∈ inv_img (S ∘ R) B → x ∈ inv_img R (inv_img S B), subj_intro 13. 15. 15 ⊢ x ∈ inv_img R (inv_img S B), hypo. 16. 15 ⊢ ∃y. y ∈ inv_img S B ∧ (x, y) ∈ R, inv_img_elim 15. 17. 17 ⊢ y ∈ inv_img S B ∧ (x, y) ∈ R, hypo. 18. 17 ⊢ y ∈ inv_img S B, conj_eliml 17. 19. 17 ⊢ ∃z. z ∈ B ∧ (y, z) ∈ S, inv_img_elim 18. 20. 20 ⊢ z ∈ B ∧ (y, z) ∈ S, hypo. 21. 20 ⊢ z ∈ B, conj_eliml 20. 22. 20 ⊢ (y, z) ∈ S, conj_elimr 20. 23. 17 ⊢ (x, y) ∈ R, conj_elimr 17. 24. 17, 20 ⊢ (x, z) ∈ S ∘ R, composition_intro 23 22. 25. 17, 20 ⊢ x ∈ inv_img (S ∘ R) B, inv_img_intro 21 24. 26. 17 ⊢ x ∈ inv_img (S ∘ R) B, ex_elim 19 25. 27. 15 ⊢ x ∈ inv_img (S ∘ R) B, ex_elim 16 26. 28. ⊢ x ∈ inv_img R (inv_img S B) → x ∈ inv_img (S ∘ R) B, subj_intro 27. 29. ⊢ x ∈ inv_img (S ∘ R) B ↔ x ∈ inv_img R (inv_img S B), bij_intro 14 28. 30. ⊢ ∀x. x ∈ inv_img (S ∘ R) B ↔ x ∈ inv_img R (inv_img S B), uq_intro 29. inv_img_composition. ⊢ inv_img (S ∘ R) B = inv_img R (inv_img S B), ext 30.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.