Proof 01. 1 ⊢ A ⊆ B, hypo. 02. 1 ⊢ A ∪ B = B, union_from_incl 1. 03. 1 ⊢ inv_img R (A ∪ B) = inv_img R B, f_equal 2, f u = inv_img R u. 04. ⊢ inv_img R A ∪ inv_img R B = inv_img R (A ∪ B), eq_symm inv_img_dist_union. 05. 1 ⊢ inv_img R A ∪ inv_img R B = inv_img R B, eq_trans 4 3. 06. 1 ⊢ inv_img R A ⊆ inv_img R B, incl_from_union 5. inv_img_incl. ⊢ A ⊆ B → inv_img R A ⊆ inv_img R B, subj_intro 6.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.